
Cryptanalysis of ORYX

D. Wagner1, L. Simpson2, E. Dawson2, J. Kelsey3, W. Millan2, and B.
Schneier3

1 University of California, Berkeley
daw@cs.berkeley.edu

2 Information Security Research Centre,
Queensland University of Technology

GPO Box 2434, Brisbane Q 4001, Australia
{simpson,dawson,millan}@fit.qut.edu.au

3 Counterpane Systems,
101 E Minnehaha Parkway, Minneapolis, MN 55419

{schneier,kelsey}@counterpane.com

Abstract. We present an attack on the ORYX stream cipher that re-
quires only 25–27 bytes of known plaintext and has time complexity of
216. This attack directly recovers the full 96 bit internal state of ORYX,
regardless of the key schedule. We also extend these techniques to show
how to break ORYX even under a ciphertext-only model. As the ORYX
cipher is used to encrypt the data transmissions in the North American
Cellular system, these results are further evidence that many of the en-
cryption algorithms used in second generation mobile communications
offer a low level of security.

1 Introduction

The demand for mobile communications systems has increased dramatically in
the last few years. Since cellular communications are sent over a radio link, it
is easy to eavesdrop on such systems without detection. To protect privacy and
prevent fraud, cryptographic algorithms have been employed to provide a more
secure mobile communications environment. First generation mobile communi-
cations devices were analog. Analog cellphones rarely use encryption, and in
any case analog encryption devices offered a very low level of security [2]. Over
the last five years digital mobile communications systems have emerged, such
as the Global Systems Mobile (GSM) standard developed in Europe and several
Telecommunications Industry Association (TIA) standards developed in North
America [6]. For these digital systems, a much higher level of security, using
modern encryption algorithms, is possible. Unfortunately, algorithms which of-
fer a high level of security have not been used in mobile telecommunications to
date.

In the case of GSM telephony, it is shown in [4] that it may be possible to
conduct a known plaintext attack against the voice privacy algorithm used in
GSM telephones, the A5 cipher. More recently it was shown in [3] that it is

possible to clone GSM telephones by conducting a chosen-challenge attack on
the COMP128 authentication algorithm.

The North American digital cellular standards designed by the TIA, includ-
ing time division multiple access (TDMA) and code division multiple access
(CDMA) both use roughly the same security architecture. The four crypto-
graphic primitives used in these systems and described in the TIA standard [6]
are:

– CAVE, for challenge-response authentication protocols and key generation.
– ORYX, a LFSR-based stream cipher for wireless data services.
– CMEA, a simple block cipher used to encrypt message data on the traffic

channel.
– For voice privacy, TDMA systems use an XOR mask, or CDMA systems use

keyed spread spectrum techniques combined with an LFSR mask.

The voice privacy algorithm in TDMA systems is especially weak since it is based
on a repeated XOR mask. Such a system can be easily attacked using ciphertext
alone [1]. The CMEA algorithm is susceptible to a known plaintext attack [7].
In this paper the security of the ORYX algorithm is examined.

ORYX is a simple stream cipher based on binary linear feedback shift regis-
ters (LFSRs) that has been proposed for use in North American digital cellular
systems to protect cellular data transmissions [6]. The cipher ORYX is used
as a keystream generator. The output of the generator is a random-looking
sequence of bytes. Encryption is performed by XORing the keystream bytes
with the data bytes to form ciphertext. Decryption is performed by XORing
the keystream bytes with the ciphertext to recover the plaintext. Hence known
plaintext-ciphertext pairs can be used to recover segments of the keystream. In
this paper, the security of ORYX is examined with respect to a known plaintext
attack conducted under the assumption that the cryptanalyst knows the com-
plete structure of the cipher and the secret key is only the initial states of the
component LFSRs.

For this attack, we assume that the complete structure of the cipher, includ-
ing the LFSR feedback functions, is known to the cryptanalyst. The key is only
the initial states of the three 32 bit LFSRs: a total keysize of 96 bits. There
is a complicated key schedule which decreases the total keyspace to something
easily searchable using brute-force techniques; this reduces the key size to 32
bits for export. However, ORYX is apparently intended to be a strong algorithm
when used with a better key schedule that provides a full 96 bits of entropy. The
attack proposed in this paper makes no use of the key schedule and is applicable
to ORYX whichever key schedule is used.

2 The ORYX Cipher

The cipher ORYX has four components: three 32-bit LFSRs which we denote
LFSRA, LFSRB and LFSRK , and an S-box containing a known permutation L

of the integer values 0 to 255, inclusive. The feedback function for LFSRK is

x32 + x28 + x19 + x18 + x16 + x14 + x11 + x10 + x9 + x6 + x5 + x+ 1.

The feedback functions for LFSRA are

x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + x+ 1

and

x32+x27+x26+x25+x24+x23+x22+x17+x13+x11+x10+x9+x8+x7+x2+x+1.

The feedback function for LFSRB is

x32 + x31 + x21 + x20 + x16 + x15 + x6 + x3 + x+ 1.

The permutation L is fixed for the duration of a call, and is formed from
a known algorithm, initialised with a value which is transmitted in the clear
during call setup. Each keystream byte is generated as follows:

1. LFSRK is stepped once.
2. LFSRA is stepped once, with one of two different feedback polynomials de-

pending on the content of a stage of LFSRK .
3. LFSRB is stepped either once or twice, depending on the content of another

stage in LFSRK .
4. The high bytes of the current states of LFSRK , LFSRA, and LFSRB are

combined to form a keystream byte using the combining function:

Keystream = {High8K + L[High8A] + L[High8B]} mod 256

3 Attack Procedure

Since ORYX has a 96-bit keyspace, it is not feasible to simply guess the whole
generator initial state and check if the guess is correct. However, if the generator
initial state can be divided into smaller parts, and it is possible to guess one small
part of the generator initial state, and incrementally check whether that guess is
correct, the generator can be attacked. The attack presented in this paper uses
this divide and conquer approach, and is a refinement of a method originally
proposed in [8]. A feature of ORYX which contributes to the efficiency of the
attack outlined in this paper is that the two stages of LFSRK whose contents
control the selection of the feedback polynomial for LFSRA and the number of
times LFSRB is stepped are both within the high eight stages of LFSRK . Since
the keystream bytes are formed from the contents of the high eight stages of
each of the three LFSR states, we divide the keyspace and focus our attack on
these 24 bits.

3.1 Attack Algorithm

Denote the high eight bits of the three LFSRs at the time the ith byte of
keystream is produced byHigh8A(i),High8B(i) andHigh8K(i). The initial con-
tents are High8A(0), High8B(0) and High8K(0), and all registers are stepped
before the first byte of keystream, denoted Z(1), is produced. To produce a
keystream byte Z(i + 1) at time instant i + 1, LFSRK is stepped once, then
LFSRA is stepped once, then LFSRB is stepped either once or twice. The con-
tents of High8A(i + 1), High8B(i + 1) and High8K(i + 1) are then combined
to form the keystream byte Z(i + 1). Therefore, there is no need to guess all
24 bits: if we guess the contents of High8A(1) and High8B(1) we can use the
first byte of the known keystream Z(1) and the combining function to calculate
the corresponding contents of High8K(1). Thus the attack requires exhaustive
search of only a 16 bit subkey: the contents of High8A(1) and High8B(1).

For a particular 16-bit guess of High8A(1) and High8B(1), we use Z(1)
and calculate the corresponding contents of High8K(1). After this calculation,
the attack proceeds iteratively as we construct a path of guesses of High8A(i),
High8B(i) and High8K(i) which are consistent with the known keystream. In
each iteration a set of predictions for the next keystream byte is formed, and
the guess evaluated by comparing the known keystream byte with the predicted
values.

In the ith iteration, we exploit the fact that after stepping the three LFSRs
to produce the next output byte, High8K(i + 1) and High8A(i + 1) effectively
have one unknown bit shifting into them and, depending on High8K(i + 1),
High8B(i+ 1) has either one or two unknown bits, for each byte of output. We
try all possible combinations of these new input bits, a total of 12 combinations,
and compute the output byte for each case. At most, there will be 12 distinct
output bytes which are consistent with the guess of High8A(i), High8B(i) and
High8K(i). We compare the known keystream byte Z(i+ 1) with the predicted
output bytes.

If Z(i + 1) is the same as one of the predicted output bytes, for the case
where there are 12 distinct outputs, then a single possible set of values exists for
High8K(i + 1), High8A(i + 1) and High8B(i + 1). We use these values in the
next iteration of the attack.

Occasionally, where there are less than 12 distinct outputs, and the keystream
byte is the same as the predicted output byte for more than one combination
of new input bits, we must consider more than one possible set of values for
High8K(i+1), High8A(i+1), and High8B(i+1). That is, the path of consistent
guesses we are following may branch. In this situation we conduct a depth-first
search.

If the keystream byte is not the same as any of the predicted output bytes,
then the guessed contents of High8A(i) and High8B(i) were obviously incorrect.
We go back along the path to the last branching point and start to trace out
another path. If we search each possible path without finding a path of consistent
guesses of length equal to the number of bytes of known keystream, then the

guessed contents of High8A(1) and High8B(1) were obviously incorrect, and we
make a new 16-bit guess and repeat the procedure.

When we find a sufficiently long path of consistent guesses, we assume that
the values for High8A(1), High8B(1) and High8K(1) were correct. This pro-
vides knowledge of the contents of the high eight stages of each of the three
LFSRs at the time that the first byte of keystream was produced. For the 24
consecutive guesses High8A(i), High8B(i) and High8K(i) for 2 ≤ i ≤ 25, each
set of values: High8K(i) and High8A(i) gives another bit in the state of LFSRK

and LFSRA, respectively, and High8B(i) gives either one or two bits in the state
of LFSRB . Once we reconstruct the 32-bit state of each LFSR, at the time the
first keystream byte was produced the LFSR states can then be stepped back to
recover the initial states of the three LFSRs: the secret key of the ORYX gener-
ator. Thus we recover the entire key using a minimum of 25 bytes of keystream,
and at most 216 guesses. We use the recovered initial states to produce a candi-
date keystream and compare to the known keystream. If the candidate keystream
is the same as the known keystream, the attack ends, otherwise we make a new
16 bit guess and repeat the procedure.

In practice, we may occasionally need a few more than 25 keystream bytes
to resolve ambiguities in the final few bits of the LFSR states. That is, we may
need to chase down a few more false trails to convince ourselves we got the last
few bits right.

3.2 Testing Procedure

The performance of the attack was experimentally analysed to find the pro-
portion of performed attacks for which the initial states can be successfully
recovered, for various keystream lengths. The experiments use the following pro-
cedure: Nonzero initial states are generated for LFSRA,LFSRB and LFSRK . A
keystream segment of length N , {Z(i)}Ni=1 is produced using the ORYX cipher
as outlined in Section 2. The attack, as described in Section 3.1, is launched
on the produced segment of the keystream. An outline of the testing procedure
follows:

– Input: The length of the observed keystream sequence, N.
– Initialisation: i = 1, where i is the current attack index, Also define imax,the

maximum number of attack trials to be conducted.
LFSRA initial state seed index, j is the current LFSRB initial state seed
index and k is the current LFSRK initial state seed index.

– Stopping Criterion: The testing procedure stops when the number of attacks
conducted reaches imax.

– Step 1: Generate pseudorandom initial state seeds ASEEDi, BSEEDi and
KSEEDi for LFSRA, LFSRB and LFSRK , respectively. (pseudorandom num-
ber routine drand48, see [5] is used).

– Step 2: Generate pseudorandom LFSR initial states using ASEEDi, BSEEDi

and KSEEDi for LFSRA, LFSRB and LFSRK , respectively.
– Step 3: Generate the keystream sequence of bytes {Z(i)}Ni=1.

– Step 4: Apply the attack to {Z(i)}Ni=1 to obtain the reconstructions of the
initial states of the three LFSRs.

– Step 5: If i ≤ imax, increment i and go to Step 1.
– Step 6: Stop the procedure.
– Output: Reconstructed initial states of LFSRA, LFSRB and LFSRK .

4 Implementation Issues for the Attack

The attack procedure described in section 3.1 involves assuming that a partic-
ular guess of High8A(i), High8B(i) and High8K(i) is correct, using this guess
to form predictions for the next keystream byte, and then comparing a known
keystream byte with the predictions: if the keystream byte contradicts all pre-
dictions, we conclude that the guess was wrong. However, it is possible that the
keystream byte Z(i+ 1) will be the same as one of the predicted output bytes,
although the values for High8A(i) and High8B(i) are incorrect. We refer to such
a situation as a false alarm.

4.1 The Probability of a False Alarm

For the attack to be effective, the probability of a false alarm occurring must be
small. Therefore, we require a high probability that an incorrect guess will be
detected (through comparison of the predicted outputs with the corresponding
keystream byte). That is, we require the probability that no predicted output
byte matches the actual keystream byte to be significantly greater than one
half, given that the guessed contents of High8A(i), High8B(i) and High8K(i)
are incorrect.

Consider the formation of the predicted output values. Each predicted out-
put is formed from an 8-bit possible value for High8A(i + 1), an 8-bit possible
value for High8B(i+ 1) and an 8-bit possible value for High8K(i+ 1). So there
are a total of 224 different input combinations. The predicted output has 8 bits.
Therefore, given a particular output value, there exist multiple input combina-
tions which result in this output. As the inputs are all non-negative integers
less than 256 and the combining function is the modulo 256 sum of the three
inputs, all output values are equally likely if the input combinations are equally
likely. Thus each output value is produced by 216 different input combinations.
If one of these input combinations is the correct combination, then there are
216 − 1 other combinations which, although incorrect, produce the same value.
The probability that a single incorrect input combination produces the same
output as the correct combination is 216−1

224−1 ≈ 0.0039. The probability that a sin-
gle incorrect input combination produces a value different to the output of the
correct combination is the complement of this; approximately 0.9961. We select
a set of twelve input combinations. The probability that an incorrect guess will
be detected (through comparison of the predicted outputs with the correspond-
ing keystream byte) is the probability that none of the predicted outputs is the
same as the known keystream value, given that all of the twelve possible input

combinations are incorrect. The situation can be approximated by the binomial
distribution. Therefore,

P (incorrect guess detected) ≈ (.9961)12 = 0.9541

Since the probability that no predicted output byte matches the actual
keystream byte, given that the guessed contents of High8A(i), High8B(i) and
High8K(i) are incorrect, is 0.9541, the probability that at least one predicted
output byte matches the actual keystream byte, given that the guessed contents
of High8A(i), High8B(i) and High8K(i) are incorrect, is 0.0459. The probabil-
ity of a false alarm is less than five percent, and the nice attribute of a false
alarm is that once we are on the wrong track, we have a 0.9541 probability of
detecting this at each step.

Using the binomial distribution to calculate approximate probabilities, given
the guessed bits are incorrect,

P (keystream byte matches 1 prediction) ≈
(

12
1

)
(0.0039)1(0.9961)11 = 0.0448

P (keystream byte matches 2 predictions) ≈
(

12
2

)
(0.0039)2(0.9961)10 = 0.0010

P (keystream byte matches ≥ 2 predictions) ≈ 0.0001

From this, we conclude that most of the time, we will generate very few false
trails—typically just one or two. Thus, we perform a depth-first search of the
possible states, but we seldom spend much time on a false trail.

Note that if we have the correct states forHigh8A(i),High8B(i) andHigh8K(i)
we never mistakenly think we have the wrong state. Once we identify the correct
High8A(1), High8B(1) and High8K(1), we can quickly find the correct states for
High8A(i), High8B(i) and High8K(i), for 2 ≤ i ≤ n for some n ≥ 25. From these
we can reconstruct the initial states of the three LFSRs.

4.2 Effect of Length of Known Keystream

The minimum length of keystream required for this attack to be successful is 25
bytes; one byte to obtain the required eight bit value for High8K(1), giving a
known eight bits in each of the three 32-bit LFSR initial states, and then one
byte to recover each of the other 24 bits in the three LFSR initial states. The
more keystream available, the more certain we are of successful reconstruction.
However, if we have less than 25 bytes of known keystream, the attack can still
be performed as outlined above to give a likely reconstruction of most of the
LFSR states, and we use exhaustive search over the contents of the last few
stages.

N 25 26 27
% Success 99.7 99.9 100.0

Table 1. Success rate (%) versus N.

5 Experimental Results

The performance of the attack was experimentally analysed to find the the pro-
portion of performed attacks for which the initial states can be successfully
recovered, for the keystream lengths N = 25, 26, and 27. For each keystream
length, the attack was performed one thousand times, using pseudorandomly
generated LFSR initial states. The attack was considered successful if the re-
constructed LFSR initial states were the same as the actual LFSR initial states.
Table 1 shows as the success rate the proportion of attacks conducted which
were successful, for each value of N .

From Table 1, we observe that even for the minimum keystream length,
N = 25, the attack is usually successful. In a small number of cases, there
exist multiple sets of LFSR initial states which produce the required keystream
segment and the attack cannot identify the actual states used. However, as noted
in Section 3.1 only a small increase in keystream length is required to eliminate
these additional candidates.

6 Ciphertext-only Attacks

In many cases, the known-plaintext attack on ORYX can be extended to a
ciphertext-only attack if some knowledge of the plaintext statistics is assumed.
For example, when the plaintext is English text or other stereotyped data,
ciphertext-only attacks are likely to be feasible with just hundreds or thousands
of bytes of ciphertext.

To perform a ciphertext-only attack we start by identifying a probable string
of at least seven characters; a word or phrase which is likely to appear in the
plaintext. Examples of probable strings include “login: ” and “. The ”. We
then slide the probable string along each ciphertext position, hoping to find a
“match” with the correct cleartext message.

If we align a probable plaintext string correctly, then we obtain a segment of
the keystream with length equal to the length of the probable plaintext string.
The known-plaintext attack described above can be performed on this keystream
segment. If every path of guesses is ruled out by the end of the N = 7 bytes of
known text, then we know the probable string does not match the cleartext at
this position. Otherwise, we conclude that we have found a valid match; this may
sound optimistic, but we show next that the probability of error is acceptably
low.

With this procedure, false matches should be rare, because false paths of
guesses are eliminated very quickly. After analyzing the first byte, 216 possibil-

ities for the high bytes of each register remain. From Section 4.1, only 0.0459
of the wrong possibilities remain undetected after the second byte; of those,
the proportion which remain undetected after the third byte is 0.0459; and so
on. This means that only 216 · (0.0459)6 = 0.00061 ≈ 2−10.7 wrong possibilities
are expected to survive the tests after N = 7 bytes of known text are consid-
ered, on average. The probability of a false match being accepted is at most
0.00061 ≈ 2−10.7. Therefore, with less than a thousand bytes of ciphertext, we
expect to see no false matches, for probable strings of length N = 7. Using a
slightly longer probable word will further reduce the probability of error.

The search for ciphertext locations which yield a valid match with the prob-
able word can be performed quite efficiently. It should take about 216 work, on
average, to check each ciphertext position for a possible match. With less than
a thousand bytes of ciphertext, the total computational effort to test a probable
word is less than 226, and thus even a search with a dictionary of probable words
is easily within reach.

Next, we describe how to use matches with the probable word to recover
the ORYX key material. Each valid match provides 8 + (N − 1) = 14 bits of
information on the initial states of LFSRA and LFSRK , and 8+1.5·(N−1) = 17
bits of information on the initial state of LFSRB . Therefore, with three probable
word matches, we will have accumulated about 42 bits of information on each
of the 32 bit keys for LFSRA and LFSRK , and 51 bits of information on the 32
bit key for LFSRB . The key can be easily recovered by solving the respective
linear equations over GF (2). Alternatively, with two matches, we have 28 bits
of information for LFSRA and LFSRK , and 34 bits of information for LFSRB .
An exhaustive search over the remaining eight unknown bits should suffice to
find the entire key with about 28 trials. For each key trial, we can decrypt the
ciphertext, and check whether the result looks like plausible plaintext by using
simple frequency statistics or more sophisticated techniques.

As long as we have enough ciphertext and can identify some set of probable
words, it should be easy to find two or three matches and thus recover the entire
ORYX key. In other words, it appears that even ciphertext-only attacks against
ORYX have relatively low complexity, when some knowledge of the plaintext
statistics is available. The computational workload and the amount of ciphertext
required are modest, and these attacks are likely to be quite practical.

7 Summary and Conclusions

ORYX is a simple stream cipher proposed for use as a keystream generator
to protect cellular data transmissions. The known plaintext attack on ORYX
presented in this paper is conducted under the assumption that the cryptanalyst
knows the complete structure of the cipher and the 96-bit secret key is only the
initial states of the component LFSRs. The attack requires exhaustive search
over 16 bits, and has over 99 percent probability of success if the cryptanalyst
knows 25 bytes of the keystream. The probability of success is increased if the
cryptanalyst has access to more than 25 bytes of the keystream. In our trials,

a keystream length of 27 bytes was sufficient for the attack to correctly recover
the key in every trial. Furthermore, we have shown how to extend this to a
ciphertext-only attack which is likely to be successful with only hundreds or
thousands of bytes of known ciphertext.

These results indicate that the ORYX algorithm offers a very low level of
security. The results further illustrate the low level of security offered in most
second generation mobile telephone devices. The authors are of the opinion that,
in most cases, this is due to the lack of public scrutiny of the cryptographic algo-
rithms prior to their adoption for widespread use. It is to be hoped that the past
reliance on security through obscurity will not be repeated in the cryptographic
algorithms to be used in the third generation of mobile communications systems,
due for use early in the twenty-first century.

References

1. E. Dawson and L. Nielsen. Automated cryptanalysis of XOR plaintext strings.
Cryptologia, volume XX Number 2, pages 165–181. April 1996.

2. B. Goldburg, E. Dawson and S. Sridharan. The automated cryptanalysis of ana-
log speech scramblers. Advances in Cryptology - EUROCRYPT’91, volume 547 of
Lecture Notes in Computer Science, pages 422–430. Springer-Verlag, 1991.

3. M. Briceno, I. Goldberg and D. Wagner. GSM cloning. 20 April, 1998.
http://www.isaac.cs.berkeley.edu/isaac/gsm.htm

4. J. Dj. Golić. Cryptanalysis of alleged A5 stream cipher. Advances in Cryptology -
EUROCRYPT’97, volume 1233 of Lecture Notes in Computer Science, pages 239–
255. Springer-Verlag, 1997.

5. H. Schildt. C the Complete Reference Osborne McGraw-Hill, Berkeley, CA, 1990.
6. TIA TR45.0.A, Common Cryptographic Algorithms June 1995, Rev B.
7. D. Wagner, B. Schneier and J. Kelsey. Cryptanalysis of the cellular message en-

cryption algorithm. Advances in Cryptology - CRYPTO’97, volume 1294 of Lecture
Notes in Computer Science, pages 526–537. Springer-Verlag, 1997.

8. D. Wagner, B. Schneier and J.Kelsey. Cryptanalysis of ORYX. unpublished
manuscript, 4 May 1997.

