
OpenCard Framework 1.2
Programmer’s Guide

BOEB-OCFP-00

IBM

OpenCard Framework 1.2
Programmer’s Guide

BOEB-OCFP-00

IBM

OpenCard Framework 1.2 — Programmer’s Guide

Fourth Edition

December, 1999

Copyright OPENCARD CONSORTIUM.

This book provides information about the OPENCARD FRAMEWORK.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are
not stocked at the address below.

IBM welcomes your comments. A form for readers’ comments may be provided at the back of this publication, or
you may address your comments or questions to the following address:

IBM Deutschland Entwicklung GmbH
Information Development, Dept. 3248
Schoenaicher Strasse 220
71032 Boeblingen
Germany

FAX (Germany): 07031 16 3456
FAX (Other Countries): (+49) 7031 16 3456

IBM Mail Exchange: DEIBMBM9 at IBMMAIL
Internet e-mail: idepubs@vnet.ibm.com
World Wide Web: www.opencard.org

If you would like a reply, be sure to include your name, address, telephone number, or FAX number.

Make sure to include the following in your comment or note:
v Title and order number of this book
v Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

Trademarks and service marks

These terms are trademarks or service marks of the IBM Corporation in the United
States or other countries:
v IBM
v CT

These terms are trademarks of other companies:

Term Owner
INTERNET EXPLORER MICROSOFT CORPORATION

JDK (JAVA DEVELOPER’S KIT) SUN MICROSYSTEMS, INC.
NETSCAPE NAVIGATOR (COMMUNICATOR) NETSCAPE COMMUNICATIONS CORP.
OCF OPENCARD CONSORTIUM

OPENCARD OPENCARD CONSORTIUM

SOLARIS SUN MICROSYSTEMS, INC.

JAVA and all JAVA-based trademarks and logos are trademarks or registered
trademarks of SUN MICROSYSTEMS, INCORPORATED, in the United States and/or other
countries.

WINDOWS, WINDOWS NT, and WINDOWS 95 are registered trademarks of MICROSOFT

CORPORATION in the United States and/or other countries.

Other company, product, and service names may be trademarks or service marks
of others.

iii

iv OpenCard Framework 1.2 Programmer’s Guide

Contents

Trademarks and service marks iii

Figures vii

Preface ix
About this manual ix
How to use this manual ix
Assumptions ix
Where you can get OpenCard Framework x
Font conventions used in this manual x
Related documents x
Feedback x

Chapter 1. Introduction 1
Developing smart card applications. 1
Developing applications using OpenCard Framework 2

Chapter 2. Getting started 5
Preparing the system 5
Writing your first sample application 5
Writing your second sample application 8

Chapter 3. OCF architectural concepts 11
Architecture overview 11
The CardTerminal layer 12
The CardService layer 14

FileAccessCardService 14
SignatureCardService 15
AppletAccessCardService and
AppletManagerCardService 15

Chapter 4. Programming with OCF. . . 17
Configuring the OpenCard Framework 17

Configuring the registries. 17
Configuring tracing output 17
OpenCardPropertyFileLoader 18
Loading properties with your own mechanism 19

Initializing the OpenCard Framework 20
Waiting for a smart card 20
Obtaining a card service 21
Handling exceptions 21
Listing applications 23
Working with files 24

FileAccessCardService 24
The CardFilePath class. 24
The CardFileInput/OutputStream classes . . . 25
The CardRandomRecordAccess class 25

Signature generation and verification 25
Generating signatures 26
Verifying signatures 26
Importing keys 27
Generating keys 27

Chapter 5. Advanced programming
with OCF 29
Working with OpenCard events 29

CardTerminalEvent 29
Locking a CardTerminal 29
TracerEvents 30

Using optional CardTerminal functions 30
Getting a smart card via event-notification 32
Obtaining a smart card from a particular card
terminal 34
Gaining exclusive access to the smart card 35
Referencing files 35
Working with credentials 37
Performing cardholder verification 39
Using the trace utility 40

Chapter 6. Using the OpenCard
Framework in applets 43
Usage scenario 43
The security model of the Java Platform 1.1 . . . 43
The security model of the Java Platform 1.2 . . . 43
The Java Plug-In. 44
Writing secure applets with OCF and the Java
Plug-In 44
Differences in the procedure between Java Platform
1.1 and 1.2. 45

Writing secure applets with OCF for Java
Platform 1.1 45
Using secure applets with OCF for the Java
Platform 1.1 46
Writing secure applets with OCF for the Java
Platform 1.2 46
Using secure applets with OCF for the Java
Platform 1.2 47

Native Browser support 48
The opencard.core.util.SystemAccess class . . . 48
Writing secure applets with OpenCard and
Netscape Communicator 48
Writing secure applets with OpenCard and
Microsoft Explorer 49

Chapter 7. Writing a CardTerminal . . . 51
Implementing a CardTerminal 51

The interface layer 51
The function layer 56
The communication layer 57
Implementing the Lockable interface 57

Implementation of a CardTerminalFactory 58

Chapter 8. Writing a card service . . . 61
CardService environment — overview 61
Application interfaces 61

Using standard CardService interfaces 61
Standard application interfaces 62

v

Defining your own interface 63
Interface standardization 63

Framework interfaces 63
CardService methods for implementation use . . 63
CardService methods for application use . . . 63
CardServiceInterface 64
Subclassing CardService 64
CardChannel 65
CardServiceFactory 69

Support for JavaCards and other Multi Application
Cards 71

State Objects 71

Selection 71
Proxy Base Classes 71

Support for SCQL Database Smart Cards 72
Package features. 72
Interface Details 73
Example of use 73

Acknowledgements. 76

Glossary 77

Bibliography 81

vi OpenCard Framework 1.2 Programmer’s Guide

Figures

1. Main parts of the OPENCARD FRAMEWORK

architecture 11
2. Classes of the CardTerminal package 13
3. The CardTerminal layer 14

vii

viii OpenCard Framework 1.2 Programmer’s Guide

Preface

By convention, a preface contains meta-information about a book describing its
structure and how the reader can best make use of it. We recommend to read this
preface to understand how this manual is organized, what typesetting conventions
are used, where to get sample code, where to find additional information, etc.

About this manual
This manual describes the OPENCARD FRAMEWORK, a smart card1 middleware
implemented in the JAVA programming language.

The OPENCARD FRAMEWORK sits between a smart card-aware application or applet
written in JAVA and the card reader (also known as Card Acceptance Device (CAD) or
Interface Device (IFD)). The framework enables programmers to write smart card
applications against a high-level programming interface that hides the complexities
of interacting with cards and card readers from different vendors. Thus,
applications developed on top of the OPENCARD FRAMEWORK are readily usable on all
platforms supporting the JAVA environment and provide the interoperability across
card and reader vendors that is required to deploy applications written as applets
in an INTERNET environment.

How to use this manual
This manual is intended for developers and programmers who want to learn the
basics of using the OPENCARD FRAMEWORK to develop smart card aware applications
and applets in the JAVA programming language.

The manual is also intended for OPENCARD component developers who implement
pluggable framework components for card terminals or cards.

Throughout this manual, we’ve provided sample code to illustrate programming
with the OPENCARD FRAMEWORK reference implementation. Notice that the code is
incomplete and thus would not compile. For the sake of brevity, we’ve shown only
those code snippets relevant to illustrate some point and haven’t always shown
how some instance variables were initialized. However, we have tried to include
sufficient comments and variable declarations to make the code illustrations
self-explanatory.

Assumptions
We assume that the reader is already familiar with the JAVA programming language
and development environment.

However, the reader may need some help in familiarizing himself with smart card
technology and the terminology used in this field in order to better understand the
concepts presented in this document.

1. The term smart card refers to integrated circuit cards as specified in the ISO / IEC standards 7816, JAVACARDs as specified in SUN’s
JavaCard 2.0 specifications, or any other smart tokens (including smart accessories).

ix

Where you can get OpenCard Framework
The OPENCARD CONSORTIUM maintains a web-site at http://www.opencard.org/ which
includes a download section from which you can obtain documentation, binaries,
class files, and source code.

You can access sample code for the Java Developer at
http://www.javaworld.com/jw-10-1998/javadev/javadev.zip.

Font conventions used in this manual
Italics are used for
v new terms, when they are defined;
v the titles of documents, papers, and books appearing in references.

Typewriter font is used for
v anything (in particular source code) that would be typed verbatim.

SMALLCAPS are used for
v names (such as company names, product names, registered trademarks, etc.).

Related documents
v OpenCard Framework 1.0 - White Paper. This paper provides a gentle introduction

to the OPENCARD FRAMEWORK, describing its objectives, the architecture, and the
reference implementation.

Feedback
Please help us improve the quality of this manual by telling us about any flaws
you can spot or by making suggestions as to how you think the material could be
presented better.

Send any corrections, amendments, suggestions, or comments to this e-mail
address:

opencard-info@opencard.org

x OpenCard Framework 1.2 Programmer’s Guide

Chapter 1. Introduction

This chapter prepares the stage for OCF. We’ll briefly talk about the fundamentals of smart
card application development in general and show how the OpenCard Framework comes in
and simplifies the task. Everyone should read this chapter, though readers familiar with
developing smart card applications may want to skip the first section.

Developing smart card applications
Smart card applications consist of a card-external application interacting with a
card-resident component. The card-external application comprises the program code
running on some computing platform such as a personal computer, a network
computer, an ATM (automatic-teller machine), or a personal digital assistant. The
card-resident component comprises data and functions in the smart card itself2.

Let’s take a closer look at what’s involved when the application interacts with the
smart card. Don’t be worried by the technical details presented here, because the
OPENCARD FRAMEWORK will hide most of the complexity from you. The intent here is
to provide some background and understanding of what is happening so that the
need for and the usefulness of OCF can be appreciated.

Interactions with the smart card occur by exchanging pairs of APDUs (application
protocol data units) and are initiated by the external application. Communication
with the smart card is accomplished via the card reader, an I/O device attached to
the computing platform into which the smart card is inserted. The application
sends a CommandAPDU to the smart card by handing it to the card reader’s device
driver, which forwards it to the smart card. In return, the card sends back a
ResponseAPDU, which the device driver hands back to the application.

A smart card’s functions are determined by the set of CommandAPDUs that it
understands. Although standards for smart cards do exist, the functionality may
vary significantly. In other words, depending on the card vendor and/or the type
of card, different functionalities are offered and the exact definition of the set of
Command- and ResponseAPDUs may differ.

Similarly, there is a broad range of card readers on the market with widely
differing functionalities. Very simple readers merely provide basic reader
functionality offering a single slot to insert the card. More sophisticated readers
offer multiple slots or include a PIN3 pad and a display that can be used to
perform cardholder verification. Card readers can attach to different I/O ports
including serial port and PC Card slot. There are even versions available that can
be inserted into the floppy drive. They come with proper driver software for a
selection of operating systems. There is no single API to access the card reader
driver.

Given these technicalities, development of smart card applications has been much
of an art in the past and was confined to a relatively small number of specialized
programmers. In addition, the dependencies on the make of the card and the card
reader have usually prevented application developers from deploying their

2. The card-resident component is referred to as an application in ISO 7816.

3. Personal Identification Number

1

applications across a wide range of cards or card readers. As a consequence, smart
card applications have been primarily ″vertical″ applications mostly implemented
with a single type of card and maybe a small number of card readers.

The emergence of multi-application cards, made possible by advances in the
underlying chip-card technology and the need to deploy smart card applications
and applets in an INTERNET setting, where it is virtually impossible to know in
advance what type of card or card reader the application will have to interact with,
make it imperative that alternate ways of developing smart card applications be
made available.

Developing applications using OpenCard Framework
Developers are normally concerned with implementing both parts of a smart card
application, the card-resident component and the card-external program. OCF
helps developers primarily in developing the card-external program code. They
can then program against high-level APIs that let make the functionality and
information contained in the smart card fully accessible. Having OCF sit in
between the application and the smart card hides the complexity of interacting
with the smart card. At the same time, the high-level of abstraction offered by the
OPENCARD FRAMEWORK achieves the desired transparency with regard to
dependencies on the particular type of smart card and/or card reader used in a
particular setting. By virtue of its framework nature, OPENCARD FRAMEWORK adapts
its capabilities at run-time to match the characteristics of a particular card reader
device and/or the particular smart card inserted into the reader. For programmers,
this means that they can concentrate on the application logic and need not be
concerned with the intricacies of dealing with a particular reader or card.

In order to adapt itself to a particular situation, OCF relies on the availability of
adequate JAVA components that can be plugged into the framework to address a
particular card reader and card inserted. But don’t worry, these components are
typically developed by card reader manufacturers and card-chip manufacturers
and are not something which application programmer have to implement. All they
have to do is to make sure that the card reader and card type they choose to
deploy the application are supported by OCF-compliant components. An
up-to-date list of the devices supported can be found at the OCF web site.

OCF will not provide support in developing the card-resident part of the
application. Normally, smart card vendors offer their cards together with a
development toolkit that supports the development of the card-resident application
component.

For conventional smart cards, the toolkit may contain tools supporting all or a
subset of the following tasks:

Layout definition
This is the process of generating an EEPROM image from a high-level
definition of the EEPROM layout. Most smart card applications maintain
information in the smart card. This information is typically kept in
EEPROM-based files on the card’s file system. Layout definition is about
identifying the information items that should go in the card and defining
an appropriate file structure in the card. The latter includes specifying the
type of file (transparent, record-oriented, cyclic), file names and/or
identifiers, access conditions, initial data, etc.

Card initialization
This is the process of writing initialization data to the smart card EEPROM

2 OpenCard Framework 1.2 Programmer’s Guide

(it could be compared to formatting a disk). The EEPROM image generated
during the layout definition is transferred to the smart card. Depending on
volume, this can be supported by special types of card readers that achieve
a high throughput.

Card personalization
This is the process of writing cardholder-specific data to the smart card.
After initialization, the smart card EEPROM reflects the basic file system
structure as defined in the layout definition and may contain some initial
data that is constant across all cards, such as meta-information about the file
system structure, cryptographic key information, etc. During
personalization, the information peculiar to an individual cardholder is
written to the card prior to issuing it.

Look at the documentation accompanying the given OCF-compliant smart card for
details on how to prepare the application’s card-resident component. For smart
cards compliant with the JAVACARD standard, the set of tools will likely be rather
different. To date, only very few vendors offer JAVACARD-compliant smart cards.
Look at the respective documentation to gain a better understanding of how to
develop the card-resident Applet

Chapter 1. Introduction 3

4 OpenCard Framework 1.2 Programmer’s Guide

Chapter 2. Getting started

This chapter provides a guide for writing a first simple smart card application. It will
become apparent how simple and efficient smart card application development can be using
the OPENCARD FRAMEWORK.

Preparing the system
Before one can start developing one’s own smart card aware applications using the
OPENCARD FRAMEWORK, there are a number of prerequisites to fulfill:
1. Get and install JDK (Java Developer’s Kit) - preferably version 1.1.6 or later, if

you have not already done so. You can find versions of the JDK for a number of
operating systems at JAVA SOFT’s JDK WWW site4. Alternatively, you can get the
JDK with one of the commercially available Integrated Development Environments
(IDE) for JAVA.

2. Likewise, download and install the OPENCARD FRAMEWORK reference
implementation available at the OCF WWW site5 and follow the installation
instructions.

3. Obtain an OCF-compliant smart card reader device. Check the list at
http://www.opencard.org/ for devices that are presently supported via
OCF-compliant CardTerminal components. Check this list frequently as new
components supporting different devices will become available.

4. Obtain OCF-compliant smart cards and the corresponding developers toolkit.
Check the list at http://www.opencard.org/ for cards that are presently
supported via OCF-compliant CardService components. Check this list
frequently as new components supporting different devices become available.

Writing your first sample application
Now that you’ve setup your system with both hardware and software, you are
ready to code your first sample application: A program that reads the cardholder
data from an OPENCARD DEMOCARD6.

If you do not own such a card, you can use any other smart card for which a
FileAccessCardService is available. Use the tools provided with your smart card
to create a transparent file in the master file (MF) of your smart card. The file must
have the ID 0xc009 and should have access condition ALWAYS or CHV for read and
write access. To initialize your card, you may prefer to start with the second
sample application (see “Writing your second sample application” on page 8),
which allows you to write data to that file.

First, we create a skeleton of the new application. The skeleton consists of import
statements, a class definition, and a main method where the actual application
code will be filled in:
import opencard.core.service.SmartCard;
import opencard.core.service.CardRequest;
import opencard.opt.iso.fs.FileAccessCardService;

4. http://java.sun.com/products/jdk/

5. http://www.opencard.org/

6. the card used for the OCF demo called ″Internet Broker″

5

import opencard.opt.iso.fs.CardFile;
public class ReadFile {
public static void main(String[] args)
{
System.out.println("reading smartcard file...");
// here, the application code will be filled in
System.exit(0);

}
}

The SmartCard class provides an entry point to OCF. To wait for a smart card to be
inserted, we will need the CardRequest class. FileAccessCardService is an interface
which can be used to access data stored on file system based cards, and CardFile
will turn out to be a useful helper class.

Before we can work with OCF, we have to initialize it. Afterwards, OCF has to be
shut down to release system resources. Since errors may occur (for example
because the user removes the smart card while it is accessed), we also have to
implement some error handling. The code to do all that may look like this:

try {
SmartCard.start();

// here, OCF can be used

} catch OpenCard Exceptions {
e.printStackTrace(System.err);

} finally { // even in case of an error...
try {
SmartCard.shutdown();

} catch OpenCard Exceptions {
e.printStackTrace(System.err);
}

}

OCF uses exceptions to indicate errors. Therefore, the application code is put into a
try/catch block. The first operation in this block initializes OCF. Any exceptions
that are thrown during initialization, or while OCF is used, are caught and printed.
Exception handling is discussed more thoroughly in “Handling exceptions” on
page 21.

To make sure that OCF is shut down even in case of an error, the corresponding
statement is located in the finally part of the try statement. At first glance, it may
seem strange that shutting down OCF may cause another exception. However, the
shutdown may cause dynamic libraries to be unloaded. An error in such an
operation indicates serious problems of the operating system and should therefore
not be ignored.

Now, we have dealt with the wrap-around code and can use OCF. The first thing
we have to do is to wait for a smart card from which we can read. This is done by
creating a CardRequest and waiting until it is satisfied:

// wait for a smartcard with file access support
CardRequest cr =
new CardRequest(CardRequest.NEWCARD, null, FileAccessCardService.class);

SmartCard sc = SmartCard.waitForCard(cr);

// here, we will read from the smart card

sc.close();
// printing the data can be done here

6 OpenCard Framework 1.2 Programmer’s Guide

The argument for creating a CardRequest indicates that we are interested only in
smart cards for which a FileAccessCardService can be instantiated. The
waitForCard method will return when such a card has been inserted. It returns a
SmartCard object that will be used by our application to refer to that card. The
close method is used after the last card access to indicate that the application no
longer needs the card.

After having obtained a SmartCard object, we have to create the card service we are
going to use. We can then specify which file we want to access, and finally read its
contents:

FileAccessCardService facs = (FileAccessCardService)
sc.getCardService(FileAccessCardService.class, true);

CardFile root = new CardFile(facs);
CardFile file = new CardFile(root, ":c009");

byte[] data = facs.read(file.getPath(), 0,
file.getLength());

Instances of the CardFile class are used to represent files or directories on the
smart card, and to obtain information about them. In our example, we use two
files. The first one, named root, is the master file, which can be compared to a root
directory on a hard disk. Each file system-based smart card has such a unique
master file. By passing only FileAccessCardService to the constructor of CardFile,
we request a reference to the master file. The second CardFile instance is created
by passing two arguments: a CardFile instance representing a directory and a
relative path from that directory to the file in which we are interested. That file has
the ID 0xc009 and resides immediately under the master file. The actual read
operation shows how the information stored by CardFile can be used. getPath
returns an absolute path to the file, while getLength returns its length in bytes. The
second argument to the read operation is the index of the first byte, while the third
one specifies the number of bytes to read. With this single method invocation, the
full contents of the file are read and returned as a byte array. If you are using an
Internet Broker demo card, you’ll have to enter the password password when the
read method is executed.

Now, the file contents are stored in a byte array named data. Since our application
will no longer access the smart card, the SmartCard object can be closed as
described above. We can then convert the byte array into a string, which will be
printed to the standard output:

String entry = new String(data);
entry = entry.trim();
System.out.println(entry);

When creating a string from a byte array, the bytes are converted to characters
using the JAVA platform’s default encoding. The trim method removes leading and
trailing whitespace from the string. This is required since only part of the file we
read may contain actual data. The rest is padded with zeroes to prevent problems
which might have otherwise been encountered in printing. Finally, the converted
and trimmed contents of the file is printed. You may use the Internet Broker demo
to verify that the output of your first sample application is correct.

Here is the complete listing of the first sample application. Although the detailed
explanations may have confused you, it’s not so long after all:
import opencard.core.service.SmartCard;
import opencard.core.service.CardRequest;
import opencard.opt.iso.fs.FileAccessCardService;
import opencard.opt.iso.fs.CardFile;

Chapter 2. Getting started 7

public class ReadFile {

public static void main(String[] args)
{
System.out.println("reading smartcard file...");

try {
SmartCard.start();

// wait for a smartcard with file access support
CardRequest cr =
new CardRequest(CardRequest.NEWCARD, null, FileAccessCardService.class);

SmartCard sc = SmartCard.waitForCard(cr);

FileAccessCardService facs = (FileAccessCardService)
sc.getCardService(FileAccessCardService.class, true);

CardFile root = new CardFile(facs);
CardFile file = new CardFile(root, ":c009");

byte[] data = facs.read(file.getPath(), 0,
file.getLength());

sc.close();

String entry = new String(data);
entry = entry.trim();
System.out.println(entry);

} catch OpenCard Exceptions {
e.printStackTrace(System.err);

} finally { // even in case of an error...
try {
SmartCard.shutdown();

} catch OpenCard Exceptions {
e.printStackTrace(System.err);

}
}

System.exit(0);
}

}

Writing your second sample application
Now that you know how to read the cardholder data from an Internet Broker
demo card, you may also want to change it. This will be the task of the second
sample application. Assuming you are now familiar with initializing OCF,
obtaining a SmartCard object, handling errors, and finally shutting down OCF
again, the purpose of the following skeleton should be obvious. The class is called
InitFile, since writing cardholder data is typically done during card initialization.
import opencard.core.service.SmartCard;
import opencard.core.service.CardRequest;
import opencard.opt.iso.fs.FileAccessCardService;
import opencard.opt.iso.fs.CardFile;

public class InitFile {

public static void main(String[] args)
{
System.out.println("initializing file...");

try {
SmartCard.start();

8 OpenCard Framework 1.2 Programmer’s Guide

// wait for a smartcard with file access support
CardRequest cr =
new CardRequest(CardRequest.NEWCARD, null, FileAccessCardService.class);

SmartCard sc = SmartCard.waitForCard(cr);

FileAccessCardService facs = (FileAccessCardService)
sc.getCardService(FileAccessCardService.class, true);

CardFile root = new CardFile(facs);
CardFile file = new CardFile(root, ":c009");

// here, we will write data to the smart card

} catch OpenCard Exceptions {
e.printStackTrace(System.err);

} finally { // even in case of an error...
try {
SmartCard.shutdown();

} catch OpenCard Exceptions {
e.printStackTrace(System.err);

}
}

System.exit(0);
}

}

Let’s assume that the data to be written to the file has been passed as a command
line argument. It is then available as the first string in the string array args. Since
the Internet Broker demo stores multiple lines in the file, our application should be
able to do the same. For the sake of simplicity, colons in the string are replaced
with newlines. The application could then be invoked like this:
java InitFile "Klaus Mustermann:klaus@banana.com"

First, the string must be converted into a byte array. The java.io mechanism could
be used for writing the string directly to the file, but that would not match the
read operations in the Internet Broker demo and the first sample application. So
this is how it’s done:

String entry = args[0].replace(':', '\n');
byte[] bytes = entry.getBytes();
int length = bytes.length;

In the first line, colons are replaced by newline characters. The second operation
converts the string into a byte array, using the JAVA platform’s default character
encoding. When taking a look at the first sample application, you will realize that
the data has to be padded with zeroes to the full length of the file. Otherwise, data
previously stored in the file would be only partially overwritten, resulting in an
incorrect output. Note that the padding is a requirement of the sample
applications, not of OCF. FileAccessCardService supports writing only parts of a
file. The length of the file can be obtained from the CardFile instance named file
using getLength. Since we cannot write more data than the file size specifies, the
input is truncated if it was too long:

int length = bytes.length;

byte[] data = new byte [file.getLength()];
if (data.length < length)
length = data.length;

System.arraycopy(bytes, 0, data, 0, length);

Now, the byte array named data holds the new contents of the file. It can be
written by a single command, specifying an absolute path to the file to write, the
target index in the file, and the data. If you are using the Internet Broker demo

Chapter 2. Getting started 9

card, you’ll have to enter the password password when this method is invoked. For
user convenience, we finally print what has been written to the file:

// write the data to the file
facs.write(file.getPath(), 0, data);

System.out.println(entry);

Note that only one method invocation was required to write the data to the file.
The rest has been done to prepare the data, which has nothing to do with OCF or
smart cards. Here is the complete listing of the second sample application:
import opencard.core.service.SmartCard;
import opencard.core.service.CardRequest;
import opencard.opt.iso.fs.FileAccessCardService;
import opencard.opt.iso.fs.CardFile;

public class InitFile {

public static void main(String[] args)
{
System.out.println("initializing file...");

try {
SmartCard.start();

// wait for a smartcard with file access support
CardRequest cr =
new CardRequest(CardRequest.NEWCARD, null, FileAccessCardService.class);

SmartCard sc = SmartCard.waitForCard(cr);

FileAccessCardService facs = (FileAccessCardService)
sc.getCardService(FileAccessCardService.class, true);

CardFile root = new CardFile(facs);
CardFile file = new CardFile(root, ":c009");

String entry = args[0].replace(':', '\n');
byte[] bytes = entry.getBytes();
int length = bytes.length;

byte[] data = new byte [file.getLength()];
if (data.length < length)
length = data.length;

System.arraycopy(bytes, 0, data, 0, length);

// write the data to the file
facs.write(file.getPath(), 0, data);

System.out.println(entry);

} catch OpenCard Exceptions {
e.printStackTrace(System.err);

} finally { // even in case of an error...
try {
SmartCard.shutdown();

} catch OpenCard Exceptions {
e.printStackTrace(System.err);

}
}

System.exit(0);
}

}

10 OpenCard Framework 1.2 Programmer’s Guide

Chapter 3. OCF architectural concepts

This chapter provides an overview of the OPENCARD architecture. We’ll briefly explain the
key concepts of the OPENCARD FRAMEWORK and put them in relation. We’ll provide enough
background to show how OCF brings together the various technology providers of the
smart card industry, the application developers, the card terminal manufacturers, the card
or card operating system manufacturers, and the card issuers. Finally, we’ll introduce those
concepts that are most relevant for application developers.

Architecture overview
We can divide the OPENCARD FRAMEWORK into two main parts: The CardTerminal
layer and the CardService layer (see also Figure 1).

The CardTerminal layer contains classes and interfaces that allow you, the
application developer, to access card terminals and their slots. Using these classes
you can, for example, find out whether a smart card is inserted in a card terminal.

The CardService layer defines the abstract CardService class: OCF represents smart
card functions through card services. Each card service defines a particular
(high-level) API that you can use to access some particular smart card function; for
example, the file access card service gives you access to the file system of a smart
card.

Both of OCF’s layers — CardTerminal and CardService — are designed using the
abstract factory pattern and the singleton pattern (as described in Design Patterns
— Elements of Reusable Object-Oriented Software). The objects dealing with the

Figure 1. Main parts of the OPENCARD FRAMEWORK architecture.

11

manufacturer specific details are produced by a factory object which is supplied by
the respective manufacturer. To determine which factory to use, OCF deploys a
singleton called registry. A registry contains the configuration of an OCF
component and creates the corresponding factory objects as needed.

We’ll take a closer look at both layers, the CardTerminal layer and the CardService
layer, in the next two sections.

The CardTerminal layer
There is a broad range of card readers on the market, with widely differing
functions. Very simple card readers merely provide basic card input-output (I/O)
functionality via a single slot to insert the card. More sophisticated card readers
offer multiple slots or include a PIN pad and a display that can be used to perform
cardholder verification. Card readers can attach to different I/O ports (e.g. serial
ports and PC Card buses). Card readers come with the proper driver software for
selected computer operating systems. OCF’s CardTerminal layer provides adequate
abstractions for the details of the various card terminals.

The classes of the CardTerminal layer serve a dual purpose: the most prominent
function is to provide access to physical card terminals and inserted smart cards.
This function is encapsulated in the CardTerminal class with its slots, and the
CardID class.

In OCF, a physical card terminal is represented through the instances of the
CardTerminal class. The answer-to-reset (ATR)7 is represented in OCF through the
CardID class. OCF allows for both static and dynamic configuration. In the case of
static configuration, the configuration of card terminals is known a priori at system
startup time. In the case of dynamic configuration, on the other hand, additional
card terminals (e.g. PC Card-based terminals) can be added at run-time.

The CardTerminal class is an abstract superclass from which concrete
implementations for particular card terminal types are derived. Each CardTerminal
object contains one or more slots that represent the physical card slots of that card
terminal. Access to a smart card that is inserted in a slot occurs through an
exclusive gate object, the SlotChannel object: The CardTerminal class ensures that,
at any given point in time, a maximum of one SlotChannel object per slot is
instantiated. Thus, once an object has obtained a SlotChannel object, no other
object can gain access to the associated smart card until that SlotChannel object has
been released.

The CardTerminal class provides methods for checking card presence, obtaining a
SlotChannel object, and sending and receiving APDUs. For card terminals offering
additional functions — such as a display, a PIN pad, a finger print reader, or other
input-output facilities — OCF provides additional interfaces that a CardTerminal
can implement.

The CardTerminal layer also offers a mechanism to add and remove card terminals.
The CardTerminalFactory class and the CardTerminalRegistry object implement
this function. Each card reader manufacturer supporting OCF provides a
CardTerminalFactory which ″knows″ about a particular family of card readers, and
the respective CardTerminal classes. The system-wide unique

7. The ATR is the initial information emitted by a smart card upon being reset.

12 OpenCard Framework 1.2 Programmer’s Guide

CardTerminalRegistry object keeps track of the installed card readers — as
illustrated in Figure 2.

Furthermore, the CardTerminalRegistry object offers methods to register and
unregister CardTerminal objects, and to enumerate all installed card terminals.

The CardTerminal classes generate events and notify the rest of the framework
when a smart card is inserted into or removed from a card terminal
(CardTerminal). These events are passed on to the EventGenerator by the
CardTerminalRegistry (see Figure 3 on page 14).

Figure 2. Classes of the CardTerminal package. OCF represents a real card terminal through
the instances of the CardTerminal class with its slots. With OCF, both static and dynamic
configurations are possible.

Chapter 3. OCF architectural concepts 13

The CardService layer
Card services are the means by which the OCF makes smart card functions
available to the application programmer. Therefore, they are the components that
you probably will work with the most.

At the present time, the OPENCARD FRAMEWORK reference implementation defines
only a few card service interfaces: FileAccessCardService and
SignatureCardService are the most important ones. However, the number of
standard card services will increase quickly, as it is the intention of the OPENCARD

CONSORTIUM to define card services for virtually all smart card functions.

FileAccessCardService
The electronic storage of information is often based on some sort of file system
concept. Not surprisingly, most smart cards in use today offer tamper-proof storage
via a file system abstraction8.

8. relational database mechanisms or object-based persistence mechanisms are alternate abstractions for the storage of information and
are considered for smart cards, too (see also the ISO standard ISO 7816-7 Interindustry commands for Structured Card Query
Language (SCQL).

Figure 3. The CardTerminal layer. The CardTerminalRegistry keeps track of the available
instances of CardTerminalFactory and CardTerminal. Each CardTerminalFactory keeps track
of the CardTerminal it instantiated. Each CardTerminal manages its slots into which smart
cards can be inserted. Insertion or removal of a smart card will trigger an event at the
corresponding CardTerminal, which is passed on to the event package’s EventGenerator by
the CardTerminalRegistry. The dynamic installation of a CardTerminal does not trigger a
special event. The events generated by the new terminal will be automatically passed to all
listeners registered at the EventGenerator.

14 OpenCard Framework 1.2 Programmer’s Guide

FileAccessCardService is OpenCard’s abstraction for dealing with smart card based
files. It offers a high-level interface modelled after JAVA’s java.io package, making
it virtually unnecessary for you to understand the nitty-gritty details of those
standards.

SignatureCardService
Electronic signatures of data rely on cryptographic mechanisms that make use of
cryptographic key information to perform their operation. A common scheme for
signing data is the use of public key algorithms like RSA, which involves a key pair
consisting of a private and a public key. Probably the most important application of
smart cards is and will be their ability to serve both as a container for key (in
particular, private key) information and as a processor for performing the
cryptographic signing operation. In other words, the signature generation can be
performed without the sensitive key information ever leaving the tamper-proof
smart card.

SignatureCardService is a simple abstraction for the import, verification, and
export of key information as well as for the generation and verification of digital
signatures generated using a public key algorithm like RSA.

AppletAccessCardService and AppletManagerCardService
Smart cards can offer multi-function capabilities, i.e. a single card can support
several applications. Accordingly, smart card applications will have to face
situations where cards of the same or different type will host diverse sets of
applets. There might even be smart card applets intended for the installation of
new or removal of existing card-resident applets. It might also be necessary to
suspend certain card-resident applets for a period of time. At the least, a smart
card aware card-external application should be capable of finding out what
card-resident applets a particular card hosts and presenting the card-holder a
choice from which to select.

In order to address these requirements, card issuers who decide what applications
are deployed or planned to be deployed with their cards put additional
meta-information in the card that card-external applications can access to find out
about - and, if necessary, change - the situation in any particular card.

These functions are handled by two card services: AppletAccessCardService and
AppletManagerCardService. AppletAccessCardService is capable of listing
applications, while AppletManagerCardService defines a high-level API through
which applications can install and remove, card-resident applets in an issuer
independent manner.

Chapter 3. OCF architectural concepts 15

16 OpenCard Framework 1.2 Programmer’s Guide

Chapter 4. Programming with OCF

Configuring the OpenCard Framework
The OPENCARD FRAMEWORK reference implementation obtains configuration
information via the JAVA system properties. JAVA system properties are a
platform-independent mechanism to make operating system and run-time
environment variables available to programs. The JAVA run-time environment
defines a set of default properties that are always part of the system properties.
Applications can extend this set of properties by loading additional properties and
merging them with the system properties. In this way, OPENCARD FRAMEWORK

configuration parameters are added to the system properties.

Configuring the registries
The system-wide CardTerminalRegistry and CardServiceRegistry keep track of the
instances of CardTerminalFactory and CardServiceFactory, respectively. In order
for the OPENCARD FRAMEWORK reference implementation to be meaningful, each
registry must know at least one factory. When the framework starts up, the
Card[Terminal|Service]Registrys are initialized by the system based on properties
that the user defined and added to the system properties.

You can configure CardTerminalRegistry via the OpenCard.terminals property and
CardServiceRegistry via the OpenCard.services property.

The syntax of the property string for either property is as follows:
<record-0> <record-1> ... <record-N>

where records are separated by a white-space and each record consists of a class
name and optional string parameters separated by a ″|″, i.e.
class-name|param-1|param-2| ... |param-N

The following example illustrates how the property string might look:

Property name:
OpenCard.services

Property string:
com.ibm.opencard.factory.MFCCardServiceFactory

Property name:
OpenCard.terminals

Property string:
com.ibm.opencard.terminal.ibm5948.IBMCardTerminalFactory|IBM5948-1|IBM5948-B02|1\
com.ibm.opencard.terminal.pcsc10.Pcsc10CardTerminalFactory

Configuring tracing output
The OPENCARD FRAMEWORK reference implementation is comprehensively
instrumented to produce detailed tracing information at run-time. This provides
valuable feedback about the operation of the framework and helps to locate
problems should they occur. You can flexibly adjust the amount of tracing
information produced by setting the OpenCard.trace system property.

17

The utility class opencard.core.util.Tracer distinguishes between the following
trace levels:

EMERGENCY System is unusable; numeric value is 0
ALERT Action must be taken immediately; numeric value is 1
CRITICAL Critical condition; numeric value is 2
ERROR Error condition; numeric value is 3
WARNING Warning condition; numeric value is 4
NOTICE Normal but significant condition; numeric value is 5
INFO Informational; numeric value is 6
DEBUG Debugging information; numeric value is 7
LOWEST Even more details; numeric value is 8

The syntax of the property string is as follows:
<package-prefix:trace-level> <package-prefix:trace-level> ... <package-prefix:trace-level>

where package-prefix specifies the prefix of a package or class name and level
specifies a number between 0 and 8 corresponding to the desired trace level.

The following example illustrates how the property strings might look:

Property name:
OpenCard.trace

Property string:
opencard.core:6 opencard.opt:0 com.ibm.opencard:3 \
com.ibm.opencard.terminal.ibm5948.IBM5948CardTerminal:8

OpenCardPropertyFileLoader
The OPENCARD architecture does not define the mechanism by which the system
properties are extended because there is no single mechanism that is guaranteed to
be available on all platforms on which the OPENCARD FRAMEWORK reference
implementation will run. However, the OPENCARD FRAMEWORK reference
implementation does provide a utility class called
opencard.opt.util.OpenCardPropertyFileLoader to load properties from a file.
This file-based properties loading mechanism is the default used to extend the
system properties. Details on how to change this mechanism are described in
“Loading properties with your own mechanism” on page 19.

Now let’s take a look at how the default properties loader works.
OpenCardPropertyFileLoader looks in the following places for property files (in the
order given):
1. [java.home]/lib/opencard.properties

2. [user.home]/.opencard.properties

3. [user.dir]/opencard.properties

4. [user.dir]/.opencard.properties

where [xxx.xxx] are the respective path variables as defined in the default system
properties. It loads the properties from each of these files, in turn merging them
with the system properties. If the properties file being read contains a property
name that has already been defined in the properties set, the new definition will be
ignored by default.

18 OpenCard Framework 1.2 Programmer’s Guide

In case you wish to override a property that is already defined in the properties
set, you can do this by defining the property name name anew and adding an
additional property with the name name.override that has the value true to your
property file.

The following example will set the property OpenCard.property to the value
new_value no matter what its value was before:
Overriding a possibly already defined OpenCard property
with a new value

OpenCard.property = new_value
OpenCard.property.override = true

Using the same properties strings as in the examples above, your properties file
might look like this:
Configuring the CardServiceRegistry
OpenCard.services = com.ibm.opencard.service.MFCCardServiceFactory

Configuring the CardTerminalRegistry
The parameters after the class name are:
name, type, and address of the card terminal
OpenCard.terminals = \
com.ibm.opencard.terminal.ibm5948.IBMCardTerminalFactory|IBM5948-1|IBM5948-B02|1 \
com.ibm.opencard.terminal.pcsc10.Pcsc10CardTerminalFactory

Configuring Tracing
OpenCard.trace = opencard.core:6 opencard.opt:0 com.ibm.opencard:3 \

com.ibm.opencard.terminal.ibm5948.IBM5948CardTerminal:8

Overriding OpenCard.property
OpenCard.property = new_value
OpenCard.property.override = true

Loading properties with your own mechanism
The default property loading mechanism implemented by the
opencard.opt.util.OpenCardPropertyFileLoader class may not be adequate in all
environments. For instance, it cannot be used on platforms that do not have a file
system.

You can implement a different property loading that fits your purpose or platform
better and have it replace the default mechanism. In order for your property loader
to integrate with the framework, it must implement the
opencard.core.util.OpenCardConfigurationProvider interface.

You must tell the framework to use your class instead of the default loader. You do
that via the following system property:

Property name:
OpenCard.loaderClassName

Property string:
fully-qualified/class/name

Note:
Obviously, you must set this property prior to the OPENCARD properties
loading mechanism being invoked, for instance via a command line flag of
the JAVA interpreter or, if applicable, in the system-wide .properties file.

Chapter 4. Programming with OCF 19

Initializing the OpenCard Framework
The OPENCARD FRAMEWORK reference implementation must be initialized at startup
time. You must therefore invoke the start() method of the SmartCard class in any
application that uses OCF. Before the application finishes, the shutdown method of
the SmartCard class should be invoked, too. The code to do has the following
appearance:
try {
SmartCard.start();

// use OCF...

} catch OpenCard Exceptions {
// handle error...

} finally {
try {
SmartCard.shutdown();

} catch OpenCard Exceptions {
// handle error...

}
}

Waiting for a smart card
The SmartCard object is the pivotal object for interacting with a physical smart
card. So now that you have initialized the framework, you probably may want to
obtain a SmartCard object. One way to achieve this is to call the waitForCard
method on the SmartCard class, which returns a SmartCard object.

The waitForCard method takes as an argument a CardRequest object that lets you
further specify the details regarding what card you are looking for and how long
you intend to wait. In particular, you can specify that
v any smart card is acceptable, including a card that has already been inserted
v only a newly inserted smart card is acceptable
v the smart card’s Answer-to-Reset response must satisfy an arbitrary condition,

specified by an instance of CardIDFilter
v the smart card must support a given CardService class or interface
v the smart card must be inserted into a particular card terminal
v the call should return after a given time-out value

These details can be specified via parameters passed to the CardRequest class
constructors and/or by invoking the corresponding CardRequest class methods.

Let’s assume that we’re interested in a smart card supporting
FileAccessCardService. We could then write the following code:
SmartCard card = SmartCard.waitForCard(
new CardRequest(CardRequest.NEWCARD, null, opencard.opt.iso.fs.FileAccessCardService.class));

The waitForCard method is a synchronous, application-driven model of gaining
access to a SmartCard object. Alternately, you may prefer an event-driven model
where your application receives a notification from the framework at the occasion
of card insertion. This model is more suited for graphical applications. It is
explained in “Getting a smart card via event-notification” on page 32.

20 OpenCard Framework 1.2 Programmer’s Guide

Obtaining a card service
Card services are the means by which smart card functions are made available to
the application. Thus, the next step is to obtain the proper instance of a given card
service.

The actions you have to take depend on the nature of the application. We
distinguish between two types of applications: (1) the ones that are prepared to
work with only one particular card-resident application, and (2) the ones that can
interact with a variety of different (at least two) card-resident applications.

In the first situation, you have probably specified the CardService class that you
already required at the time you issued the waitForCard call. The code fragment to
obtain e.g. FileAccessCardService looks like this:
FileAccessCardService facs = null;
try {
facs = (FileAccessCardService)
card.getCardService(FileAccessCardService, true);

} catch OpenCard Exceptions {
// handle error...

}

You’re now ready to start working with the requested card service. We’ll show you
how to work with some of the available card services in subsequent sections.

In the situation where your application can interact with several different
card-resident applications, you will have to find out what card-resident
applications are present. For that purpose, you must obtain
AppletAccessCardService, which has a list method that lets you obtain the list of
applications on the card. In this case, the code looks something like this:
AppletAccessCardService aacs = null;
try {
aacs = (AppletAccessCardService)
card.getCardService(AppletAccessCardService, true);

} catch OpenCard Exceptions {
// handle error...

}

You’re now ready to write the code to select a particular application in the card.
We’ll show you how to do that in the next section.

Handling exceptions
It is important that provisions be made in every code for dealing with exceptional
circumstances, and OPENCARD FRAMEWORK features a number of corresponding
methods for responding appropriately to unusual situations.

At the root of OCF’s exception hierarchy are two classes:
opencard.core.OpenCardException and opencard.core.OpenCardRuntimeException.
The first is a subclass of JAVA’s IOException and is therefore checked, while the
second is a subclass of RuntimeException and is thus unchecked. The distinction is
that the latter need not be caught or declared to be thrown (i.e. the compiler does
not force you to handle these exceptions - hence the term ’unchecked exception’).
The rationale behind this concept is that exceptions of this kind disrupt the normal
program flow so severely that continuing would not make much sense. Further,
from a pragmatic point of view, it would often be impractical to check for these
conditions (an example of this is OutOfMemoryError, which can be thrown

Chapter 4. Programming with OCF 21

practically anywhere in code where objects are created dynamically). Nevertheless,
all other exceptions should be dealt with in order to ensure program robustness.

The OCF exception hierarchy branches into two major trunks in the terminal and
service sub-packages. The exception classes in the terminal package all extend
CardTerminalException, which is itself a subclass of OpenCardException (and
therefore checked). In the service package, we have two base exception classes:
the CardServiceException class and the CardServiceRuntimeException class. The
CardServiceException class extends OpenCardException, while the
CardServiceRuntimeException class extends OpenCardRuntimeException. The latter
has only two subclasses, which means that the application developer must handle
the vast majority of OPENCARD’s exceptions.

Throughout this guide, for the sake of brevity, a ’catch-all’ exception handler has
been used in the code samples. However, this is not a style to be recommended in
real-world code. So if specific exceptions are thrown in your code, catch them
using a specific handler. The most general OCF sample in this guide looks like this:
try {
SmartCard.start (); // get OpenCard up and running

// here comes your client code
SmartCard.shutdown () // cleanup OpenCard

}
catch (Exception e) {
// catch-all handler
// ...
}

When looking at the declaration of SmartCard.start, it becomes apparent that this
method declares four exceptions that may be thrown:
v OpenCardPropertyLoadingException

v ClassNotFoundException

v CardServiceException

v CardTerminalException

As you now know, the complete sample above should be written with specific
exception handlers as in the following:
try {
SmartCard.start (); // get OpenCard up and running

// here comes your client code
SmartCard.shutdown ();
// cleanup OpenCard

}
catch (OpenCardPropertyLoadingException plfe) {
// ...

}
catch (ClassNotFoundException cnfe) {
// ...

}
catch (CardServiceException cse) {
// ...

}
catch (CardTerminalException cte) {
// ...

}

This code is now less concise than the first sample presented above. Further, it
takes longer to write (and to compile). But it is precise (it is obvious what this
piece of software does and where it may fail) and specific. When an exception is

22 OpenCard Framework 1.2 Programmer’s Guide

thrown, the user will know exactly what kind of exception it was. This is hence the
proper way to deal with specific exceptions.

Listing applications
Card-resident applets are described by meta-information encapsulated in AppletInfo
objects. This meta-information includes the user-friendly label and the AppletID.

The term ″applet″ as we use it in this documentation can be either a program,
which is executed on the card itself (like a typical Java Card applet). Or it can be
an application specific set of files and directory structures (as we will find on ISO
compliant file system oriented cards). In both cases the AppletID is used to identify
the applet in a world-wide unique way. There are standards which define how
each smart card should hold a directory of AppletIDs, allowing any card-external
application to decide, if it supports a particular card or not

You can obtain the AppletInfos from your SmartCard object using
AppletAccessCardService’s list method.
AppletInfo [] templates = null;
try {
AppletAccessCardService aacs = null;
aacs = (AppletAccessCardService)

card.getCardService(AppletAccessCardService, true);
templates = aacs.list();
// evaluate templates, e.g., present the user a list
// of applet names from which to select
// ...

} catch OpenCard Exceptions {
// handle exception
...

}

Given the array of AppletInfo objects, you can prepare a list with applet names
from which the user or the card-externmal application selects the applet he wants
to work with. That application will then use the respective AppletInfo object to
locate itself on the smart card. How applets defined by the AppletInfo objects are
mapped to the corresponding card-external applications is beyond OCF’s scope.

Using the AppletInfo retrieved by the the AppletAccessCardService the correct
Applet can now be selected. For example an ISO compliant card can use the
AppletID within the select-by-AID command to select the directory which
corresponds to a particular application. A Java Card can use the AppletID to select
a appropriate Java Applet, which can be executed on the card.

So your code might look something like this:
try {
// ...
AppletID aid = template[0].getAid());
CardFilePath filePath = new CardFilePath(aid.toString());
// ...

} catch OpenCard Exceptions {
// handle exception
...

}

Chapter 4. Programming with OCF 23

Working with files
Files in the smart card are accessed via FileAccessCardService. We have already
explained how an application obtains an instance of this service in a previous
section. In this section, we’ll take a look at how FileAccessCardService works and
explain how to use the additional classes that come along with it.

FileAccessCardService
FileAccessCardService provides a variety of methods to obtain information about
the files in the smart card and to read and update them. The service operates
stateless. This means that there is no such thing as a current directory or an open
file. Instead, all methods that operate on a particular file expect a CardFilePath
argument that identifies the target file. Information about a file in the smart card is
provided by an instance of the CardFileInfo interface. This interface defines
methods to query the kind of file, for example whether it is a directory, a
transparent data file, or a structured data file. Other methods provide more
detailed information, like the size of the file. Here is a code fragment that shows
how to obtain file information:
try {
CardFilePath rootpath = facs.getRoot()
CardFilePath filepath = new CardFilePath(rootpath);
filepath.append(new CardFilePath(":c009"));

CardFileInfo rootinfo = facs.getFileInfo(rootpath);
CardFileInfo fileinfo = facs.getFileInfo(filepath);

} catch OpenCard Exceptions {
// handle error...

}

First, FileAccessCardService is used to obtain the path to the master file on the
smart card, which is stored in rootpath. Then, a copy of that path is extended by a
relative path to the file with an ID of 0xc009. The result is an absolute path to that
file, which is stored in filepath. The following two invocations of
FileAccessCardService return the information about these two files.

The CardFilePath class
Dealing with CardFilePath is tricky and error-prone, since CardFilePath objects are
mutable and have to be copied frequently to ensure proper operation of the
application. Aside from that, it is inconvenient to use two attributes to store the
path to and the information about the same file. The CardFile class combines these
two attributes, as well as providing several constructors that simplify path
composition. Using the CardFile class, the code fragment of the previous section
would look like this:
try {
CardFile root = new CardFile(facs);
CardFile file = new CardFile(root, ":c009");

} catch OpenCard Exceptions {
// handle error...

}

The first CardFile object is created by simply passing FileAccessCardService to
the constructor. The constructor will use getRoot to obtain the path to the master
file, and invoke getFileInfo to obtain the information about this file. Apart from
the path and information about the file, the CardFile object also stores the instance
of FileAccessCardService that was used to create it.

24 OpenCard Framework 1.2 Programmer’s Guide

The second CardFile object is created by passing a parent directory in form of
another CardFile object, and a string that contains a relative path from the parent
directory to the file to represent with the new CardFile object. The constructor will
copy the path of the parent directory, append a relative path created from the
string, and invoke getFileInfo to obtain the information about this file.
FileAccessCardService used is the one that is stored in the parent CardFile.

Having created a CardFile object, the path to the represented file can be obtained
using getPath. Since CardFile implements the CardFileInfo interface, the methods
defined there can be invoked directly at the CardFile object. If there is a need to
have the CardFileInfo object that was returned by FileAccessCardService —for
example to downcast it to an implementation specific type —it can be obtained by
invoking getFileInfo at the CardFile object.

The CardFileInput/OutputStream classes
The java.io package defines classes and interfaces to access files in a traditional
file system, for example on a hard disk. File system-based smart cards typically
support various file types. One of these are transparent files, which are comparable
to files in a traditional file system. The CardFileInputStream and
CardFileOutputStream classes extend the java.io classes named InputStream and
OutputStream, respectively. They can be used to access transparent files in a smart
card through the java.io mechanisms. Their constructors expect a CardFile object
that specifies the transparent file to access as well as the instance of
FileAccessCardService to use.

In a similar way, the CardFileReader and CardFileWriter classes extend the
java.io classes named InputStreamReader and OutputStreamWriter, respectively.
These classes provide file access on a character basis instead of on a byte basis.

The CardRandomRecordAccess class
The CardRandomRecordAccess and CardRecord classes provide a high level
mechanism for accessing linear structured files of either fixed or variable record
size. CardRecord is used to encapsulate the data stored in the records.
CardRandomRecordAccess defines a file pointer to a record in the structured file and
provides methods to read and write single records or arrays of records. Its
constructor expects a CardFile object that represents the linear structured file and
specifies the particular instance of FileAccessCardService to use for accessing it.

Note:
CardRandomRecordAccess can be used only for files with a linear structure.
Transparent files are not split into records; they can be accessed using the
classes described in the previous section. On the other hand, files with a
cyclic structure do not support random write access and may use a different
way of addressing records when reading. Currently, there is no high level
mechanism for accessing cyclic files.

Signature generation and verification
The generation and verification of signatures in the smart card is performed via
the following signature card services: SignatureCardService,
KeyImportCardService, and KeyGenerationCardService. The functionality is
distributed into these three interfaces to allow a card service implementer to
implement only that subset of signature functionality which is supported by the

Chapter 4. Programming with OCF 25

specific card. We have already explained how an application obtains a particular
instance of CardService in a previous section. In this section, we’ll take a look at
the abstractions that the signature card services provide and explain how they’re
used.

Generating signatures
To generate/verify a signature, a card service implementing interface called
SignatureCardService is needed. Signature generation on a message is performed
by computing a hash value on the message and then encrypting the hash value
using the private key of a public key algorithm. In the example below, the RSA
public key algorithm is used.

SignatureCardService offers the signData method to perform this operation. In
addition to the message to be signed, the method needs to know which hash
algorithm and public key algorithm to use and which key to use for signing. The
private key reference for file-oriented cards consists of a directory CardFilePath
object and an integer specifying the number of the key relative to the directory.

The code you have to write looks something like this
byte[] message = ...;
byte[] signature = null;
SignatureCardService scs = null;
try {
// allocate card service
scs = (SignatureCardService)
card.getCardService(SignatureCardService, true);

// create the private key reference
CardFilePath path = new CardFilePath(":3F00:C200");
PrivateKeyFile keyRef = new PrivateKeyFile(path,0);
// generate signature
signature = scs.signData(keyRef,"SHA1withRSA",message);
} catch OpenCard Exceptions {
// handle exception
...

}

Verifying signatures
Signature verification on a message is performed by computing the decryption on
the given signature using the public key, computing a hash value on the plain
message, and comparing the hash value to the decrypted signature.
SignatureCardService offers the verifySignedData method to perform this
operation. In addition to the plain and cipher message to be verified, the method
needs to know the hash algorithm and public key algorithm to be used and which
key to use for signing. The public key reference for file-oriented cards consists of a
directory CardFilePath object and an integer specifying the number of the key
relative to the directory. The code you have to write looks something like this:
byte[] message = ...;
byte[] signature = ...;
SignatureCardService scs = null;
try {
// wait for card and obtain the card service
// ...
// create the public key reference
CardFilePath path = new CardFilePath(":3F00:C200");
PublicKeyFile keyRef = new PublicKeyFile(path,1);
// verify signature
boolean result = scs.verifySignedData(keyRef,"SHA1withRSA", message, signature);

26 OpenCard Framework 1.2 Programmer’s Guide

} catch OpenCard Exceptions {
// handle exception
...

}

Instead of performing both of these operations (the hashing operation and the
public key algorithm) on the card, it is possible to perform the time-consuming
hashing of long messages outside the OPENCARD FRAMEWORK. To do this,
SignatureCardService offers two methods: the SignHash() method and the
VerifySignedHash() method, respectively. Computing the hash value is then the
responsibility of the application, and can be performed using classes like SUN’s
MESSAGEDIGEST in the java.security package or subpackages. It may also make
sense to perform signature verification (which does not involve any private keys)
off card using the java.security package. Wherever the private key is needed (for
example when performing signature generation), a smart card offers tamper-proof
storage to protect the private key.

Importing keys
In addition to generating and verifying signatures, KeyImportCardService (which
extends the SignatureCardService interface) offers methods for the importation
and subsequent in-card verification of keys for asymmetric key algorithms. The
non-validating methods to import keys are importPrivateKey and importPublicKey.
In addition to the actual key data and key information, these methods take as
parameters a key reference to identify the storage location of the imported key. The
key reference for file-oriented cards consists of a directory CardFilePath object and
an integer specifying the number of the key relative to the directory. The
corresponding validating methods are importAndValidatePrivateKey and
importAndValidatePublicKey. These methods make the smart card check the
integrity of the imported key by validating a signature of the key, which is passed
as an additional parameter, using (another) indicated key for signature verification.
The smart card accepts the imported keys subject to successful verification. The
code to import and validate a private key might look something like this:
RSACRTKey rsaPrivate = ...;
byte[] signature = ...;
byte[] keyInfo = ...;
SignatureCardService scs = null;
try {
// wait for card and obtain the two card services
// ...

// create the private key reference for the key to be imported
CardFilePath path1 = new CardFilePath(":3F00:C110");
PrivateKeyFile targetKey = new PrivateKeyFile(path1,0);
// create the public key reference for the key to verify the signature
CardFilePath path2 = new CardFilePath(":3F00:C200");
PublicKeyFile valKey = new PublicKeyFile(path2,1);
boolean result = scs.importAndValidatePrivateKey(targetKey,

rsaPrivate, keyInfo, signature, valKey);
// ...

} catch OpenCard Exceptions {
// handle exception
...

}

Generating keys
In addition to working with signatures, KeyGenerationCardService — a further
extension of the SignatureCardService interface — also offers methods for
generating a key pair for a public key algorithm on the card and for reading the
public key part of the pair for usage outside of the card.

Chapter 4. Programming with OCF 27

The method for generating keys is called generateKeyPair. In addition to the
storage destinations for the private and public keys, this method takes as
parameters the required key strength and key algorithm. A specific card may not
support the required strength and algorithm, and the card service representing the
card may throw an appropriate exception.

The method for reading the public key is called readPublicKey. In addition to the
key reference for the key to be read, this method takes the required key algorithm
as a parameter. No method is available for reading the private key since the
private key should never leave the card.

The code for generating a RSA key pair and reading the public key might look like
this:
RSAPublicKey rsaPublic = null;
KeyGenerationCardService kgs = null;
try {
// wait for card and obtain the card service
// ...
// create the key references for the keys to be generated
CardFilePath path = new CardFilePath(":3F00:C110");
PrivateKeyFile privKey = new PrivateKeyFile(path,0);
PublicKeyFile pubKey = new PublicKeyFile(path,1);
kgs.generateKeyPair(privKey, pubKey, 512, "RSA");
// read the public key from the card
rsaPublic = (RSAPublicKey) kgs.readPublicKey(pubKey, "RSA");
// ...
} catch OpenCard Exceptions {
// handle exception
...

}

28 OpenCard Framework 1.2 Programmer’s Guide

Chapter 5. Advanced programming with OCF

In this chapter, we’ll show you some more advanced programming concepts of the
OPENCARD FRAMEWORK.

Working with OpenCard events
OpenCard uses the Observer design pattern to inform listeners about events that
happen in the framework.

In the OPENCARD FRAMEWORK reference implementation, there are a number of
objects that can be the source of OpenCardEvent objects that other framework
components or the application itself might be interested in. The implementation of
the event notification is based on EventObject class and EventListener interface of
the java.util package.

Objects that are interested in receiving event notifications must implement some
extension of the EventListener interface and register with the proper object by
adding themselves as listeners.

As an application programmer, you may be interested in the following types of
OPENCARD FRAMEWORK events:
v events signalling that a card was inserted or removed into a card terminal,
v events signalling that a tracer issued a tracing message.

CardTerminalEvent
In previous versions of OCF the CardTerminalRegistry was responsible to emit
card insertion/removal events. This function is now moved to class
EventGenerator in the events package to have a clearer separation between the
events and terminal package. The EventGenerator continuously monitors the state
of physical card reader devices and emits CardTerminalEvents if the state changes.

The CTListener interface defines two methods, cardInserted() and cardRemoved(),
through which CardTerminalEvents can be communicated to objects interested in
these events.

You can register objects that are interested in receiving CardTerminalEvents
provided they implement the CTListener interface. You can register your
CTListener with the system-wide EventGenerator instance using the addListener()
and removeListener() methods. The registered objects will then receive all
CardTerminalEvents produced by all currently-registered CardTerminal objects.

Locking a CardTerminal
Once you hava a SmartCard object you can gain exclusive access using the
SmartCard.beginMutex() methods. This is described under “Gaining exclusive
access to the smart card” on page 35

There are other scenarios like transferring money from one smartcard to another
one where you need to maintain a lock on an individual slot or the whole
CardTerminal across card insertions and card removals.

29

To lock a terminal you can use the methods declared in the
opencard.opt.terminal.Lockable interface, as demonstrated in the following
example:
// lock terminal
Enumeration terminals =CardTerminalRegistry.getRegistry().getCardTerminals();
CardTerminal t = (CardTerminal)terminals.nextElement();
Lockable terminal = null;
Object handle = null;
if (t instanceof Lockable) {

terminal = (Lockable)t;
System.out.println("Locking terminal "+terminal);
handle = terminal.lock();

}
// now request SmartCard objects and communicate with cards

The lock on a CardTerminal must be obtained before requesting any SmartCard
object for the terminal. It will throw an exception, if another process (outside of the
JVM running the OCF application) or another thread using OCF already uses the
CardTerminal.

To release a lock on a locked CardTerminal first destroy all SmartCard objects
before calling the unlock function as the following example shows
SmartCard sc = ...
// close down the SmartCard object and unlock the terminal
sc.close();
sc = null;
if (handle!=null) {

terminal.unlock(handle);
}

The OpenCard Reference implementation comes with a lockable CardTerminal
implementation for PCSC card readers (see
com.ibm.opencard.terminal.pcsc10.Pcsc10LockableTerminal. Since the Lockable
interface is an optional interface, not all CardTerminals will be lockable. To see
how to implement a lockable CardTerminal see “Implementing the Lockable
interface” on page 57

For more details on CardTerminal Locking see RFC 17-1 OCF Terminal Locking
Mechanism on the OpenCard website.

TracerEvents
For an explanation of TracerEvents, please see “Using the trace utility” on page 40.

Using optional CardTerminal functions
For many applications, it will be sufficient to work with the SmartCard object and
CardService objects to interact with the smart card. However, some applications
may want to take advantage of special features that some card reader devices offer,
such as using the display or the PIN pad integrated with the reader.

CardTerminal objects expose additional features by implementing corresponding
interfaces. The OPENCARD FRAMEWORK reference implementation defines a number of
these interfaces in the opencard.opt.terminal package. They include:

UserInteraction
This interface comprises the display() method to present a message to the
cardholder, the clearDisplay() method to erase the message from the
display, the keyboardInput() method to collect a string entered by the

30 OpenCard Framework 1.2 Programmer’s Guide

cardholder, and the promptUser() convenience method, which combines
displaying the message to and collecting input from the cardholder into a
single call.

PowerManagementInterface
This interface comprises the powerUpCard() and powerDownCard() methods,
both of which take the slot number as a parameter and allow the supply of
power to the smart card in the designated slot to be controlled. This
function is useful with long lasting applications that only sporadically
interact with the smart card in environments where low power
consumption matters, e.g. PDAs and hand-held computers.

TerminalCommand
This interface comprises the sendTerminalCommand() method, which takes a
byte array and sends it to the card reader. Assuming an application knows
the set of commands that a given card reader supports, it can use this
interface to control the card reader.

The CardTerminal class offers the features() method, which returns a Properties
object containing descriptive property strings for a particular terminal. These
properties may be used to indicate to the application what optional features a
particular CardTerminal object supports.9Alternately, an application can use the
introspection API to find out whether the particular CardTerminal supports a given
interface.

Let’s assume that you would like to make use of the UserInteraction function in
your application. This is the code you would use:
try {
// initialize framework
SmartCard.start();
// wait for a card to be inserted
// any new card will do; any reader will do
SmartCard card = SmartCard.waitForCard(new CardRequest());

// get the card terminal in which the card was inserted
CardTerminal terminal = card.getCardID().getSlot().getCardTerminal();

String name = null;

// check whether it supports UserInteraction
if (terminal instanceof UserInteraction.class) {
// we can prompt user using the terminals I/O capabilities
// assuming we accept all letters, allLetters might be a string containing
// all characters in upper and lower case plus blank
// assuming a LF or CR terminate the input, terminator might be a
// string containing "\n\r"
name = terminal.promptUser("Please enter your name:",

new CardTerminalIOControl(0, 60, allLetters, terminator));
} else {
// put code here to prompt user in a different way, e.g. through a GUI
// ...

}

// do something with the name
if (name != null) {
// put your code here
}

9. At present, we still lack a standard set of properties to characterize card terminals beyond the pure terminal configuration data.
This is needed if an application wants to find out what optional functions a card reader supports.

Chapter 5. Advanced programming with OCF 31

} catch OpenCard Exceptions {
// exception handling
// ..

}

Similar code can be used to make use of the other interfaces
(PowerManagementInterface and TerminalCommand).

Getting a smart card via event-notification
In “Waiting for a smart card” on page 20, we showed you how you gain access to a
SmartCard object using the application-driven programming model based on the
synchronous waitForCard call. In this section, we will introduce an event-driven
programming model to accomplish the same based on the event notification
mechanism introduced in “Working with OpenCard events” on page 29.

In the event-driven programming model, an application suspends its execution
after initialization. The execution resumes when the application receives an event
that has to be processed. Events can be received from various sources. For
example, there may be timer events that trigger regular actions, like auto-saving in
an editor. Other events can originate from network connections, indicating external
request. The kind of events we are interested here are the result of user input. The
JAVA ABSTRACT WINDOW TOOLKIT (AWT) sends events when the user moves the
mouse, or presses a key on the keyboard. Likewise, the OPENCARD FRAMEWORK sends
events when the user inserts or removes a smart card. The key advantage of the
event-driven paradigm is that a single application thread is sufficient to process
events from various sources. In the application-driven paradigm, a thread has to
block on a single source of input, for example the waitForCard call that is used to
wait for insertion of a smart card.

In order to receive events, an application has to register at a source of events. In
OCF, the central source for events is EventGenerator. An object implementing the
CTListener interface has to be passed to the registry, which will invoke the
methods of that object at the appropriate time. The argument to each invocation is
a CardTerminalEvent that includes details about what happened where. Take a look
at this example:
import opencard.core.event.CTListener;
import opencard.core.event.CardTerminalEvent;
import opencard.core.event.EventGenerator;
import opencard.core.terminal.Slot;
import opencard.core.terminal.CardTerminal;
import opencard.core.service.SmartCard;

public class Listener implements CTListener {
private SmartCard smartcard = null;
private CardTerminal terminal=null;
private int slotID = 0;

public void register()
{
EventGenerator.getGenerator().addCTListener(this);
try {
EventGenerator.getGenerator().createEventsForPresentCards(this);

} catch (Exception e) {
e.printStackTrace(System.err);

}
}

public void unregister()

32 OpenCard Framework 1.2 Programmer’s Guide

{
EventGenerator.getGenerator().removeCTListener(this);

}

public void cardInserted(CardTerminalEvent event)
{
if (smartcard == null) {
try {
smartcard = SmartCard.getSmartCard(event);
terminal = event.getCardTerminal();
slotID = event.getSlotID();

} catch OpenCard Exceptions {
// handle error...

}
}

}

public void cardRemoved(CardTerminalEvent event)
{
if ((event.getSlotID() == slotID) &&(event.getCardTerminal()==terminal)) {
smartcard = null;
terminal = null;
slotID = null;

}
}

}

The class implements the interface CTListener, which requires the cardInserted
and cardRemoved methods. The cardInserted method is invoked when a smart
card is inserted into one of the slots of one of the terminals. In the example, this
method first checks whether there is already a SmartCard object. If there is none,
one is created by invoking getSmartCard. This is the non-blocking counterpart of
waitForCard. Optionally, CardRequest can be passed as a second argument. If that
request is not satisfied by the smart card that has just been inserted, getSmartCard
returns null. After creating the SmartCard object, the terminal and slot where the
card is located is stored. The cardRemoved method is invoked when a smart card is
removed from one of the slots. In the example, it is checked whether the card has
been removed from the slot for which a SmartCard object has been created by
means of the cardInserted method. If so, that SmartCard object is thrown away,
since it cannot be used anymore. If not, the event is simply ignored.

Now that we know what happens when an event occurs, how can we make sure
that the events are passed to our Listener object? That’s what register does. It
registers Listener at CardTerminalRegistry by invoking addCTListener. From then
on, every card insertion or removal results in an invocation of the cardInserted
and cardRemoved methods. There remains one problem: What about smart cards
that have been inserted before our listener was registered? We may want to know
about them, too. This is achieved by invoking the createEventsForPresentCards
method. This method scans all terminals and slots, and creates events for any cards
present in the slots. These events are not sent to just any event listener, but instead
only to the one that is passed as an argument. That way, other applications will
not receive card insertion events for cards they already know of. Since scanning the
slots may result in exceptions being thrown, some error handling has to be done at
this point. If a card is inserted between registering and the following invocation of
createEventsForPresentCards, the listener may get two events for that card.
Double events can be filtered out by checking the slot from which they originate.

Chapter 5. Advanced programming with OCF 33

The counterpart to the register method is unregister. It removes a listener from
the set of objects that will be notified about new events. Some spurious events may
still be reported to the removed listener if an event broadcast operation is already
in progress.

Note:
The event handling methods are invoked by a thread that has to notify other
listeners, too. Therefore, event handling methods have to execute fast, and
they cannot invoke blocking methods like waitForCard. Otherwise, the system
may run into a deadlock.

The creation of a SmartCard object like in the example above is at the outer
limit of what should be done in the event handler itself. If more complex
operations have to be performed to process an event, the application thread
should be notified. This may require event queuing in order to prevent events
from going unnoticed because the application thread is busy processing a
previous event. You will find more information about event handling in
books about JAVA’S ABSTRACT WINDOW TOOLKIT (AWT).

Obtaining a smart card from a particular card terminal
Let’s assume that a system has configured multiple card readers or multi-slotted
card readers. Applications may have a need for a particular card reader or slot.
The reason may be that only this card reader supports prompting the cardholder
for the cardholder verification (CHV) data using the built-in display and PIN pad10,
or that only this slot supports capturing the physical smart card for the duration of
the interaction.

Correspondingly, you have to write your application so that it looks for a
particular card terminal or slot and gets a SmartCard object once a physical smart
card has been inserted. The system-wide CardTerminalRegistry instance offers the
getCardTerminals() method, which returns an Enumeration of all CardTerminal
objects presently registered. You get a reference to the CardTerminalRegistry
instance through the getRegistry() class method. Once you have obtained the
Enumeration of CardTerminal objects, you can walk through it and determine the
one you are looking for.

Your code to identify the proper terminal might look something like this:
try {
// initialize framework
SmartCard.start();

// get the enumeration of presently registered card terminals
Enumeration terminals = CardTerminalRegistry.getRegistry().getCardTerminals();

// iterate over terminals to get the first instance of proper type
String wantedType = new String("IBM5948-B02");
CardTerminal terminal = null;
while (terminals.hasMoreElements()) {
terminal = (CardTerminal) terminals.nextElement();
if (terminal.getType() .equals(wantedType)) {
wanted = terminal;
break;

10. Performing CHV without exposing the entered PIN code or password outside of the card reader device’s security perimeter
enhances security.

34 OpenCard Framework 1.2 Programmer’s Guide

}
}

// do something with the wanted terminal
// ...

} catch OpenCard Exceptions {
// handle exception
// ...

}

Once you have the reference to the wanted terminal, you can either use the
application-driven model and wait for a card using the SmartCard’s waitForCard()
method to pass it a CardRequest object with the card terminal set (by means of the
setCardTerminal() method), or you can use the event-driven model and get the
card using the SmartCard’s getSmartCard() method to pass it the
CardTerminalEvent object you received via the cardInserted() notification.

Gaining exclusive access to the smart card
Exclusive access to smart cards can be required in situations where an application
needs to perform a semantic function on the card that requires an uninterrupted
sequence of smart card operations. A good example for this requirement is a
payment application such as running in an automatic teller machine (ATM)11 that
has to debit the card and credit some account (or vice versa) by a certain amount
within a transaction context.

In your applications, you can acquire a mutex context by calling the beginMutex()
method and release it by calling endMutex() on the SmartCard object. For the
application to be well-behaved, you should claim the mutex context for as short a
period as possible to avoid unnecessarily blocking other applications (or threads)
from accessing the card.

Referencing files
ISO-1716-4 defines four different ways of referencing files within a smart card.
They are:

Referencing by file identifier:
Files may be referenced by a file identifier coded in two bytes. For
uniqueness, EFs (files) and DFs (directories) under a common DF shall
have different file identifiers. The MF (root directory) shall have a file ID of
hexadecimal value 0x3f00.

Referencing by path:
Files may referenced by a path, i.e. a concatenation of file identifiers. The
path begins with the identifier of the MF or of the current DF, the order of
the identifiers is parent to child. In case the identifier of the current
directory is unknown, a hexadecimal value of 0x3fff can be used instead
(reserved value).

Referencing by short EF identifier:
EFs can be referenced by a short EF identifier coded on five bits with
values in the range from 1 to 30. The value 0 is used to reference the
currently selected EF. Short EF identifiers cannot be used in a path or as a
file ID.

11. ATM’s typically take in the cards for the period of interaction to prevent early removal of the card by the user.

Chapter 5. Advanced programming with OCF 35

Referencing by DF name:
DFs can referenced by a DF name coded in one to sixteen bytes. For
uniqueness, DFs within a card shall have different DF names (see also the
specification of application identifiers).

In the OPENCARD FRAMEWORK reference implementation, references to files in the
smart card are abstracted by the CardFilePath class. Most of what you want to do
as an application programmer can be performed via this class. For convenience, the
CardFilePath class offers two constructors, one taking a string and one taking a
byte array as the argument. You use the string-based constructor when your
application obtains the reference from a file or system property or when you
hard-code file IDs for improved readability. You use the byte array constructor
when your application obtains the file reference directly as a byte value, for
instance, by reading a DIR12 file in the card itself.

String representations of file references have to conform to the following syntax:
v A single file ID starts with a colon (″:″) followed by four hexadecimal digits13.

Example: The master file (MF) of an ISO file system card is represented by the
strings ″:3f00″ or ″:3F00″.

v A short file ID starts with a colon (″:″) followed by two hexadecimal digits
representing the 5–bit value of the identifier. Example: the short file ID 20
(decimal) is represented by the string: ″:14″.

v An application identifier (or DF name) starts with a hash (″#″) followed by an
even number of hexadecimal digits specifying the byte values of the application
identifier.

v An application identifier (or DF name) in string notation does not start with a
special character. It consists of a sequence of ASCII characters which specify the
byte values of the application identifier.

Given these definitions, the following strings represent valid card file paths:

File reference Meaning
:3f00 The MF (root directory)
:3f00:c200:f5 The EF (file) having a short EF ID of 21</ xph> contained inDF

(directory) having a file ID of 0xc200

In addition to supporting certain file referencing methods, the OPENCARD FRAMEWORK

reference implementation offers referencing files via symbolic file names.

File reference Meaning
/MF/LOYALTY/BONUS The EF (file) named BONUS in the DF (directory) named LOYALTY

under the MF (root directory)

Smart cards do not commonly support symbolic names directly, i.e. the symbolic
names specified in the card-external application must eventually be resolved into
one of the ISO-defined file references. Typically, this resolution is done by the
CardService layer and is not something the application programmer is concerned
with directly. However, since not all implementations will support symbolic names,
that the documentation accompanying the particular card services in use be
checked.

12. DIR files are EFs containing a list of applications that a card contains along with optional information (e.g. the path to the DF
application).

13. A hexadecimal digit is a character from the set 0-9, a-f, A-F.

36 OpenCard Framework 1.2 Programmer’s Guide

Apart from simply improving the readability of applications, symbolic path names
imply an additional redirection when referencing files in the card. This redirection
can be used by card issuers to their advantage by letting them allocate ISO-based
file IDs independently of the application logical file structure. The net benefit to
application programmers is that the application becomes more portable by being
independent of the details of file reference usage.

Working with credentials
At the start of a smart-card aware application, the card-external application and
the card-resident application usually engage in a procedure to establish a trusted
relationship prior to exchanging any sensitive information. This procedure may
involve one or more of the following measures:
1. The card-external application authenticates itself to the card-resident

application. In smart card parlance, this is called External Authentication.
2. The card-resident application authenticates itself to the card-external

application. In smart card parlance, this is called Internal Authentication.
3. The cardholder authenticates him or herself to the card. In smart card parlance,

this is called Cardholder Verification (CHV).

Steps 1 and 2 combined are sometimes called mutual authentication.

Mutual authentication typically relies on a challenge-response protocol involving
the computation of a response to a challenge using some cryptographic keys
shared between challenger and responder. Cardholder verification typically relies
on the cardholder proving his identity by revealing a shared secret (such as a
password or PIN code) or by presenting a biometric characteristic such as a finger
print or retina pattern scan. The card-resident application usually occupies a
directory (DF) and all the files underneath it.14

Accordingly, granting access to an application can be equated with granting access
to a directory. Access conditions to files in the file system of a smart card are
typically defined during layout specification (see also “Developing applications
using OpenCard Framework” on page 2.)15To abstract from file-system oriented
cards, we call this a security domain. The access conditions for internal
authentication rely on cryptographic key(s) stored in the card as part of the
card-resident application, while the access condition for external authentication
relies on cryptographic key(s) provided by the card-external application. For access
conditions involving CHV, see “Performing cardholder verification” on page 39.

The cryptographic algorithms used in the computations of access conditions can
vary between different types of smart cards. Accordingly, in situations where a
card-external application has to interact with card-resident applications protected
via different cryptographic mechanisms, the card-external application must be able
to provide cryptographic keys for all these mechanisms.

Now what does this all mean to application programmers? It means that they must
have a way to make available in their (card-external) application proper credentials
(most often cryptographic keys or certificates) that fit the access conditions of the
files which the given application is supposed to interact with.

14. In the case of JAVACARDs, the model will be somewhat different, but the essence of what is said here remains valid.

15. This may be different in the case of emerging multi-function smart cards whose operating system allows for the post-issuance
deployment of applications.

Chapter 5. Advanced programming with OCF 37

The OPENCARD FRAMEWORK has hooks in the package called opencard.opt.security
that allow the application programmer to do just that: Interface SecureService
has a method called provideCredentials which allows the application to pass a
bag of credentials for a security domain. Sample card services that implement this
interface are FileAccessCardService or SignatureCardService.

Within CredentialBag, the credentials are organized as follows: CredentialBag
contains a CredentialStore for each type of card that is supported by the
application called /SecurityDomain. Each CredentialStore conceptionally is a
dictionary of key/value pairs that associate a key with a Credential. A Credential
usually represents a key and the associated algorithm needed to perform a
cryptographic function.

Since some of these concepts are implemented differently for specific cards, the
OPENCARD FRAMEWORK provides only such abstract classes as CredentialStore or
(tag) interfaces like SecureService, Credential, SignCredential,
SymmetricCredential, and PKACredential where standardization is not yet
achieved. The card service implementer for a specific card must implement these
interfaces or subclass the abstract classes.

In those cases in which we see enough commonality between different cards, the
OPENCARD FRAMEWORK provides concrete implementations of Credentials like
RSASignCredential and DSASignCredential used to perform external authentication
using public key algorithms. Other concrete credential implementations may be
added over time.

As an application programmer using a specific card service, you thus have to
instantiate the appropriate subclasses of the Credentials interfaces matching the
used card services. You then put the credentials in the CredentialStore subclasses
provided by the card service and add them to a CredentialBag. Finally, you make
the credentials available by invoking the provideCredentials method of the card
service needing the credentials.

In the example pseudo code below, we assume the application has to interact with
two types of smart cards with cryptographic algorithms relying on DES 18 and
RSA 19, respectively. The corresponding DESSignCredential class and
VendorXCredentialStore classes are provided by the respective card vendors (who
also provide the FileAccessCardService implementations).

// instantiate DES keys
DESSignCredential desCred0 = new DESSignCredential(...);
DESSignCredential desCred1 = new DESSignCredential(...);
// instantiate key store for DES type smart cards
VendorXCredentialStore desStore = new VendorXCredentialStore();
// add credentials to store under a lookup number
desStore.storeCredential(new Integer(0), desCred0);
desStore.storeCredential(new Integer(1), desCred1);
// instantiate private RSA keys
RSASignCredential rsaCred0 = new RSASignCredential(...);
RSASignCredential rsaCred1 = new RSASignCredential(...);
// instantiate key store for RSA type smart cards
VendorYCredentialStore rsaStore = new VendorYCredentialStore();
// add credentials to store under a lookup number
rsaStore.storeCredential(new Integer(0), rsaCred0);
rsaStore.storeCredential(new Integer(0), rsaCred1);
// instantiate credential bag for the application's security domain
CredentialBag credBag = new CredentialBag()
// add stores to bag
credBag.addCredentialStore(desStore);
credBag.addCredentialStore(rsaStore);

38 OpenCard Framework 1.2 Programmer’s Guide

// work with smart card
try {

// wait for smart card
SmartCard sc = SmartCard.waitForCard(
new CardRequest(opencard.opt.iso.fs.FileAccessCardService.class));
// get file system card service
FileAccessCardService fscs =
card.getCardService(opencard.opt.iso.fs.FileAccessCardService.class, false);
// for file oriented card use a path as security domain
CardFilePath domain = new CardFilePath(":3F00:C110");
// add root key bag
fscs.provideCredentials(domain, credBag);
// keep going
// ...

} catch OpenCard Exceptions {
// ...

}

Observe that the Key and KeyStore classes in the code sample are fictitious; look
into the documentations provided by your card service provider to find out the
proper classes to use with your card services.

Performing cardholder verification
The card-resident component of a smart card application typically resides within a
directory (DF) of the smart card file system. Access to this application directory is
usually granted only if the cardholder’s identity can be successfully verified. This
verification process is called cardholder verification (CHV) and is commonly based
on a secret shared between the card-resident application and the cardholder. The
secret is called CHV data and can be a PIN code or password that the cardholder
must provide after being prompted for input.

The prompting of the cardholder and the acquisition of the CHV data can be
performed in one of two ways:

GUI-based
The cardholder is presented with a GUI that prompts for input of the CHV
data. The assumption here is that the application is running in a general
purpose computing device with display and keyboard or pen input and a
smart card reader attached to it.

Terminal-based
The cardholder is prompted for input by the card terminal. The
assumption here is that the card terminal has a built-in (simple) display
and keyboard or PIN pad.

Both approaches have their pluses and minuses. The GUI-based CHV acquisition
gives the application programmer complete freedom in forming the visual
appearance of the dialog with the user; this may be desirable if company branding
is important for all interactions with a cardholder. The disadvantage is that the
sensitive CHV data is entered via a normal keyboard and is maintained in the
computer’s memory and, therefore, is subject to eavesdropping attacks. In contrast,
the terminal-based approach keeps the sensitive data within the security perimeter
of card terminal devices, which are often designed and manufactured to meet
certain security criteria. The drawback of these devices is that they typically offer
only simple text-based dialog capability.

Chapter 5. Advanced programming with OCF 39

Provided a card terminal supports terminal-based CHV, which is the case if the
corresponding CardTerminal subclass implements the VerifiedAPDUInterface
interface, the OPENCARD FRAMEWORK reference implementation will use this terminal
capability for increased security. In other words, you as an application programmer
cannot enforce the GUI-based approach. At present, the OPENCARD FRAMEWORK has
not architected a way for you to specify the prompt statement that gets presented
to the user. Check the documentation of your card service implementation for a
possibility to specify this string.

In case a card terminal does not support terminal-based CHV, the OPENCARD

FRAMEWORK reference implementation will use the GUI-based approach. In this case,
you have the option of either accepting the default GUI dialog implemented in the
DefaultCHVDialog class or implementing your own GUI dialog and registering it
with the CardService object. Your GUI component must implement the CHVDialog
interface. You register it via the CardService object’s setCHVDialog() method,
which takes your GUI instance as the argument.

The fact that the OPENCARD FRAMEWORK reference implementation does not give the
programmer the choice between GUI-based and terminal-based CHV acquisition
may at first seem arbitrarily restrictive. However, the impact on security in return
for freely providing a choice contradicts the design objectives of the OPENCARD

FRAMEWORK and, in most cases, would contradict the original intent that motivated
the use of smart cards to secure an application in the first place.

Using the trace utility
Tracing is a widely practiced programming technique; during program
development it is convenient for debugging and, once an application is deployed,
it can serve to produce an operations log that can be used for diagnostics. The
amount of tracing output to be produced depends on the purpose and often is
configurable at load-time or even run-time of the application.

The OPENCARD FRAMEWORK reference implementation internally makes use of a
tracing utility implemented in the Tracer class. You can use this utility for your
own purposes when developing your application. The Tracer class distinguishes a
total of eight different trace levels and can be configured via the OpenCard.trace
system property (see “Configuring tracing output” on page 17). For each trace
level, the Tracer class offers two methods to issue a trace message, one taking a
String object as a message parameter, the other taking a Throwable object instead.

The code of a class of yours using the Tracer class might look something like this:
public class MyClass {

// instance tracer
private Tracer itracer = new Tracer(this, MyClass.class);

// class tracer
private static Tracer ctracer = new Tracer(MyClass.class);

public MyClass() {
// ...
ctracer.info("<init>", "initializing");

// ...
}

public void someMethod() {
// ...
itracer.debug("someMethod", "something's fishy here");

40 OpenCard Framework 1.2 Programmer’s Guide

// ...
try {
// ...

} catch OpenCard Exceptions {
// ...
itracer.critical("someMethod", e);

// ...
}

}

In addition to just creating tracing output, the Tracer class offers a trace
event-notification service. This service notifies all components that have previously
registered with a Tracer object about the occurrence of a trace event. You can
register components via the addTracerListener() and removeTracerListener()
methods of the Tracer class. The components you register must implement the
TracerListener interface, which specifies the single traceEvent() method taking a
TracerEvent object as a parameter.

Chapter 5. Advanced programming with OCF 41

42 OpenCard Framework 1.2 Programmer’s Guide

Chapter 6. Using the OpenCard Framework in applets

Using the OCF functionality in browsers brings additional advantages, but also requires
some extra work to be done. This is due mostly to the security concerns raised by loading
executable content from the INTERNET. In the old days of the Sandbox model, operations
considered potentially harmful were simply not allowed for applets loaded from the
INTERNET. OCF performs a few operations which would have been included in this category.
The security model of the JAVA PLATFORM 1.1 and even more so of the upcoming version 1.2
do allow such operations to be performed under certain conditions. It should be noted
though that the security models differ substantially in versions 1.1 and 1.2 and that
different tools are being used. What complicates matters even more is the fact that the two
most prominent INTERNET browsers used —i.e. NETSCAPE NAVIGATOR (COMMUNICATOR) and
MICROSOFT INTERNET EXPLORER — still use their proprietary security model. To remedy this
situation, SUN (JAVASOFT) introduced the JAVA PLUG-IN (formerly named ACTIVATOR) which
allows users to specify an alternative JVM which can then be used instead of the browser’s
built-in virtual machine.

The following chapter describes both alternative approaches:
v using the more portable pure java approach of the Java Plug-IN
v using the proprietary security mechanisms of the browsers

Usage scenario
The easiest thing is to write an applet that uses OCF, bundle all that together, and
download all this stuff in its entirety. But although OCF is not too fat (and we’ll
strive to make it even leaner), we did not want users having to download software
they already have (the OCF itself that is) sitting on their local machine. Our usage
scenario therefore consists of the OCF being installed on the local user machine
and an applet being downloaded from the INTERNET using that local OCF.

The security model of the Java Platform 1.1
Version 1.1 basically extends the JAVA PLATFORM 1.0 model such that digitally signed
applets are granted the same privileges as code loaded locally (provided that the
certificate used for creating the signature is known). So that’s still the old ″all or
nothing″ approach only ″improved″ by the ability to allow applets to perform
potentially risky operations at all. Local code is trusted generally.

The security model of the Java Platform 1.2
This version will substantially improve security management as it will be possible
to grant privileges in a very fine-grained matter. Within the range of ″all″ or
″nothing,″ one may state the operations allowed to be carried out by code coming
from a certain location and signed by one or several signers. One notable
difference to the model of the PLATFORM 1.1 is that code stored locally is
conceptually regarded not to be more trustworthy than code downloaded from the
INTERNET.

43

The Java Plug-In
This is basically a piece of code (technically an Active/X control for MS INTERNET

EXPLORER or a plug-in for the NETSCAPE NAVIGATOR) that circumvents the browser’s
built-in virtual machine and uses another one. This may be either a JRE coming
with the PLUG-IN software or any other version you wish to use, e.g. a beta version
of the upcoming JAVA PLATFORM 1.2. HTML documents have to be instrumented
with some special tags in order for the browsers to detect the request for the
PLUG-IN to be executed. If it has not been installed before, the browser offers to
download it on the fly. Once downloaded and installed, the browser will use the
PLUG-IN software every time it encounters such an instrumented HTML document.
This in turn will cause the desired JVM to be used instead of the browser’s own
version. The PLUG-IN comes with a control panel which allows you for instance to
determine which JVM and which proxies to use.

Note:
This software does not currently support SOCKS servers. In order to
instrument your HTML documents with the required tags, you can use a
conversion tool which is offered by SUN free of charge and is pretty easy to
use.

Writing secure applets with OCF and the Java Plug-In
As the developer, you’ll have to acquire two things: the PLUG-IN and a digital
certificate. The easiest way to get the PLUG-IN is to visit the Plug-in product site at
http://www.javasoft.com/products/plugin/

and select the appropriate download package for your platform.

As these HTML documents are all instrumented with the special tags, your
browser will note that the PLUG-IN is not installed yet on your local machine and
offer to download it. Well, there’s no reason to turn down this offer here;-) so go
ahead and get the chunk of about 5 MB. Install the thing and start your browser
anew. After that, visit the above mentioned demo site and try one of the samples
again. This should now bring up the PLUG-IN console window, and the demos
should work. If this is not the case, check the PLUG-IN’s FAQ (chances are the
problems are caused by proxies).

There are basically two ways of getting a certificate: buying one or making one.
The latter case is acceptable only for testing purposes because everyone can do that
(including some not-so well behaved hacker or criminal). The bottom line is that
everyone should be very suspicious of code that may have been signed while the
certificate coming with it was not issued by an official Certification Authority.
These are companies (e.g. VERISIGN, THAWTE) that officially confirm that individuals
or organizations/companies are who they claim to be. To this end, they’ll give the
certificate requester a digital certificate signed by them. The certificate can then be
used by developers (that means you;-) to digitally sign their code (e.g. applets).
The recipient of the code is then able to check whether or not the code was
changed during transmission and that it indeed does come from the one who
claims he sent/provided it.

44 OpenCard Framework 1.2 Programmer’s Guide

Note:
Please bear in mind that nothing else can be concluded from a digital
signature, e.g. that the code does not carry out harmful operations on your
machine, is bug-free, generally usable, or well-engineered.

The Certification Authorities have digital certificates themselves which are stored
by default in the browsers which are thus able to check certificates coming with
digital signatures in some code downloaded from the INTERNET. If you nonetheless
want to create a so called ″self-signed″ certificate for testing purposes, we’ll show
you how to do that in the sections below which are specific to the JAVA PLATFORM

1.1 and 1.2.

Once you have a certificate, you can use it to sign your code. To do that, the code
must be packaged into a Jar archive. Signing the archive will cause it to increase in
size slightly as some data will be added to it. After you have written the HTML
document using your applet (and tested it locally with the Appletviewer), you
must adapt it to use the special tags required for the PLUG-IN. Using the HTML
converter for this chore is easiest.

Now you are ready to deploy the converted HTML document along with the
applet archived in a Jar file. Move it to your web server and test it.

Differences in the procedure between Java Platform 1.1 and 1.2
As mentioned above the security models have evolved quite a bit from the early
JAVA versions, over PLATFORM 1.1, up to the upcoming PLATFORM 1.2. Concepts, terms,
capabilities and tools are different affecting the procedure in the following areas:
v creating and storing a self-signed certificate
v signing an archive
v importing a certificate.

These procedures are described in more detail below for the respective platform.

Writing secure applets with OCF for Java Platform 1.1
1. Creating and storing a self-signed certificate (if not using an official certificate).
v Create an identity in the identity database:

javakey -cs <identityName> true
// e.g. javakey -cs "Mike" true

v Create a certificate directive file, which basically is a simple ASCII text file
e.g.

issuer.name=Mike
issuer.cert=1
subject.name=Mike
subject.real.name=Mike Wendler
subject.org.unit=SC
subject.org=IBM
subject.country=GE
start.date=18 Jun 1997
end.date=15 Sep 1998
serial.number=1001
out.file=MikesCert4J11.cer

Chapter 6. Using the OpenCard Framework in applets 45

v Generate a certificate:
javakey -gc <certification_directive_file>
// e.g. javakey -gc MikesCertDirective

2. Digitally sign an archive.
v Create a signing directive file, which basically is a simple ASCII text file as

well, e.g.
signer=Mike
cert=1
chain=0
signature.file=MIKESIGN
out.file=SignedApplet.jar

v Sign the archive:
javakey -gs <sign_directive_file>
// e.g. javakey -gs MikesSignDirective

For more information about javakey please have a look at the tool documentation
accompanying each JDK.

Using secure applets with OCF for the Java Platform 1.1
1. Create a new trusted identity in your keystore (which is being created if it does

not already exist)
javakey -cs <identityName> true
// e.g. javakey -cs "Mike" true

2. Import the certificate of the new trusted identity into the local keystore:
javakey -ic <identityName> <certificateFile>
// e.g. javakey -cs "Mike" MikesCert4J11.cer

3. Download the HTML document with the desired applet from the web server.

Steps 4 - 7 are only required if you haven’t installed the JAVA PLUG-IN before.
4. Download the PLUG-IN when prompted and install it.
5. After installation, activate the JAVA PLUG-IN control panel and select the

″Advanced″ tab. In the JAVA RUNTIME ENVIRONMENT section, select one of the one
or more versions of JDK 1.1 that should be listed there.

6. If the only proxy you use is a SOCKS, you’ll have to set an alternative http proxy
in the ″Proxies″ section of the JAVA PLUG-IN control panel. (The JAVA PLUG-IN

cannot handle SOCKS servers).
7. Start your browser anew and fetch the corresponding HTML document again

(step 3).

Writing secure applets with OCF for the Java Platform 1.2
1. Create and store a self-signed certificate (if not using an official certificate):
v Create a key pair in the identity database:

keytool -genkey -alias <aliasName> -keystore
<keystoreName> -keypass <keyPassword>
-dname <x500Name> -storepass <keystorePassword>
// e.g. keytool -genkey -alias Mike -keystore .keystore
// -keypass Mikeskeypass -dname "cn=Mike" -storepass Mikesstorepass

Export the self-signed certificate:
keytool -export -alias <aliasName> -file <certificateFileName>
// e.g. keytool -export -alias Mike -file MikesCert4J12.cer

2. Digitally sign an archive:

46 OpenCard Framework 1.2 Programmer’s Guide

jarsigner -storepass <keystorePassword> -keystore <keystoreName>
-keypass <keyPassword> <JarArchive> <aliasName>
// e.g. jarsigner -storepass Mikesstorepass -keystore .keystore
-keypass Mikeskeypass SignedApplet.jar Mike

Using secure applets with OCF for the Java Platform 1.2
1. If you have not already done so, install the latest version of JDK 1.2 and update

your environment accordingly.
2. If you do not already have a .java.policy file in your user.home directory,

provide one. This file determines what actions foreign applets are allowed to
carry out on your local machine. A possible policy file (setting all required
privileges for the Internet Broker demo) may look like this:
// this keystore is to store our certificates
keystore ".keystore";

// a grant entry suitable for the Internet Broker Demo
// allows ALL applets that were signed by "Mike" to carry out the following actions
grant signedBy "Mike" {

// read and write arbitrary (including sensitive) system properties
permission java.util.PropertyPermission "*", "read,write";

// read the 'opencard.properties' file in the standard locations
permission java.io.FilePermission "${java.home}/lib/opencard.properties", "read";
permission java.io.FilePermission "${user.home}/.opencard.properties", "read";
permission java.io.FilePermission "${user.dir}/opencard.properties", "read";
permission java.io.FilePermission "${user.dir}/.opencard.properties", "read";

// dynamically load native libraries
permission java.lang.RuntimePermission "loadLibrary.*";

// get access to declared constructors/methods/fields via reflection API
permission java.lang.RuntimePermission "reflect.declared.*";

};

3. Import the certificate into your keystore (which is being created if it does not
already exist):
keytool -import -alias <aliasName> -file <certificateFile>

-storepass <yourKeyStorePasswordHere>
// e.g. keytool -import -alias Mike -file MikesCert.cer
-storepass <yourKeyStorePasswordHere>

4. If you don’t already have one, create a Jar archive of OCF on the local machine
and sign it with either a self-signed or an ″official″ certificate.

5. Download the HTML document with the desired applet from the web server.

Steps 6 - 9 are required only if you haven’t installed the JAVA PLUG-IN before.
6. Download the PLUG-IN when prompted and install it.
7. After installation, activate the JAVA PLUG-IN control panel and select the

″Advanced″ tab. In the JAVA RUNTIME ENVIRONMENT section, select one of the one
or more versions of JDK 1.1 that should be listed there.

8. If the only proxy you use is a SOCKS, you’ll have to set an alternative http proxy
in the ’Proxies’ section of the Java Plug-in control panel (e.g. proxy.de.ibm.com/
on port 80). (The JAVA PLUG-IN cannot handle SOCKS servers).

9. Start your browser anew and fetch the according HTML document again (step
3).

For more information about keytool/jarsigner, please have a look at the tool
documentation accompanying each JDK.

Chapter 6. Using the OpenCard Framework in applets 47

Native Browser support
By native browser support we understand the deployment of OCF under the
proprietary JVM and security model of a specific vendor’s browser product. The
most commonly used products at the time of writing, Netscape Navigator and
Microsoft Explorer both allow applets to escape the Java 1.0 sandbox and use
system resources like native calls, file system and properties from within a
downloaded applet if
v the applet is signed using the vendor specific signing process
v the applet calls proprietary APIs to request the required privileges

.

The following instructions outline the procedures to get signed applets working
under some browsers’ proprietary Java virtual machines.

The opencard.core.util.SystemAccess class
OCF needs access to system resources. Native calls (JNI) are needed in some
terminal implementations, access to properties is needed in the initalization step to
configure the registries, access to the file system is needed when reading the
opencard.properties file. Access to those resources from an applet in a browser
environment requires the caller to request the privilege to do so from the browser
using proprietary APIs.

To avoid vendor specific calls in the OCF pure java code base this browser specific
code has been isolated in the singleton class SystemAccess. By default OCF is
configured with classopencard.core.util.SystemAccess which does not contain
browser specific code. This works fine when using the Java Plug-In JVM or
when using Java applications. When running OCF under a browser's VM a
browser specific SystemAccess class should be configured as follows before
the SmartCard.start() method is invoked:

public void init() {
...
opencard.core.util.SystemAccess sys =
new opencard.opt.vendorX.VendorXSystemAccess();

opencard.core.util.SystemAccess.setSystemAccess(sys);
...
SmartCard.start();
...
}

OCF will then use the configured SystemAccess class instead.

To make sure the browser specific SystemAccess class is considered part of the
signed applet the class file must be packaged as part of the signed applet and must
not be contained in the system class path of the browser environment.

Writing secure applets with OpenCard and Netscape
Communicator

The following instructions use Netscape Communicator 4.07 under Windows NT
4.0 but the concepts presented can be applied to other platforms as well.

Install the OpenCard base components in a local directory. The CLASSPATH
environment variable should point to the OCF class or jar files in the environment
where the browser is invoked.

48 OpenCard Framework 1.2 Programmer’s Guide

If the configured card terminals need native libraries, the DLLs should be placed in
the \program\java\bin directory of the Netscape product tree.

OpenCard searches in java.home, user.home and user.dir directories for its
properties file. ″java.home″ is unset under Netscape, ″user.home″ is set to
\Netscape\Users\<userid>\ and ″user.dir″ is set to the current directory of the
browser. The recommendation is to install a <netscape-product-
path>\Netscape\Users\<youruserid>\.opencard.properties file.

Add the following code to the init() method of your applet:
opencard.core.util.SystemAccess sys =
new opencard.opt.netscape.NetscapeSystemAccess();

opencard.core.util.SystemAccess.setSystemAccess(sys);

Package your applet, the opencard.opt.netscape.NetscapeSystemAccess.class and
other classes needed (but not contained in the locally installed OCF) into one jar
file by using Netscape’s signtool. The signtool plus documentation is available
from http://developer.netscape.com/docs/manuals/signedobj/signtool/index.htm.
The obtained jar file must be signed using a valid signer certificate. The certificate
necessary is Netscape specific. A test key pair and certificate can be created by
using the signtool.

Writing secure applets with OpenCard and Microsoft Explorer
The following instructions use Microsoft Explorer 4.0 under Windows NT 4.0 but
the concepts presented can be applied to other platforms as well. To successfully
run native card terminals the JNI update to the Microsoft JVM needs to be
installed. It can be downloaded from http://www.microsoft.com/java.

Install the OpenCard base components in a local directory. The CLASSPATH
environment variable should point to the OCF class or jar files in the environment
where the browser is invoked.

If the configured card terminals need native libraries, the DLLs should be placed in
a directory contained in the PATH environment variable.

OpenCard searches the following paths under Microsofts JVM:
java.home:
C:\WINNT\Java\lib\opencard.properties,
C:\WINNT\Java\.opencard.properties
user.home:
C:\WINNT\Profiles\<youruserid>\Desktop\opencard.properties,
C:\WINNT\Profiles\<youruserid>\Desktop\.opencard.properties

The recommendation is to put the opencard.properties into
\<system>\profiles\<userid>\Desktop\ directory.

Add the following code to the init method of your applet:
opencard.core.util.SystemAccess sys =
new opencard.opt.ms.MicrosoftSystemAccess();

opencard.core.util.SystemAccess.setSystemAccess(sys);

Package your applet, the opencard.opt.ms.MicrosoftSystemAccess.class and other
classes needed (but not contained in the locally installed OCF) into one cab file by
using Microsoft’s SDK for Java cabarc and signcode tools. The tools plus
documentation is available from http://www.microsoft.com/java. The obtained

Chapter 6. Using the OpenCard Framework in applets 49

cab file must be signed using a valid signer certificate. The certificate necessary is
Microsoft specific. A test key pair and certificate can be created by using the
Microsoft SDK for Java.

50 OpenCard Framework 1.2 Programmer’s Guide

Chapter 7. Writing a CardTerminal

Writing a CardTerminal isn’t particularly difficult — provided you know everything you
need to know about your smart card reader. In this section, we’ll show you how to
implement a CardTerminal. There are many possible ways of obtaining a working
CardTerminal, so we’ll limit ourselves to just a few of the more important kinds of
implementation.

Implementing a CardTerminal
Note:All timeout parameters should be ignored in terminal implementations. The
timeout parameter still exists as a placeholder from previous releases of OCF
where it was used to avoid breaking binary compatibility of existing
CardTerminals. Implementers of new CardTerminals should simply ignore this
parameter!

It is convenient to divide CardTerminal implementation into three layers.
Depending upon the specific circumstances of your case, you may have to
implement all three layers or you may be able to improvise using pre-existent
parts.

interface layer
This layer is derived from the abstract CardTerminal class. It provides the
methods for interfacing with the upper part of the framework.

function layer
This layer encapsulates the detailed knowledge about your reader.

communication layer
This layer provides methods for handling the transfer of the data between
the host (your computer) and the card reader.

The interface layer
This layer provides the standard functions needed by OCF to access the smart
card. The top-level CardTerminal implementation must inherit from the
opencard.core.terminal.CardTerminal class to provide these functions.

Important methods
In order to write a CardTerminal, you will have to implement or overwrite at least
the following methods:
v Constructor

v open() and close()

v isCardPresent()

v getCardID()

v powerUpCard()

v internalFeatures()

v internalReset()

v internalSendAPDU()

51

The Constructor: First, you should overwrite the default Constructor. It is
important to invoke the Constructor of the parent class (see the sample code in the
following example). After doing this, you must add the Slot objects to your
terminal.

The following is a sample Constructor for a card reader possessing a single slot:
protected MyCardTerminal(String name, String type, String device)

throws CardTerminalException {

super(name, type, device);
addSlots(1);

}

The open() and close() methods: The open() and close() methods should
implement the initialization and cleanup of the next-lower layer (the function
layer). The open() method must make sure that successive calls to the
isCardPresent() method are not using unitialized data. In the case of an
unrecoverable error, you should abort and throw a CardTerminalException with a
plain-language message to assist the application programmer in localizing the
problem.

The isCardPresent() method: The task of the isCardPresent() method is to
recognize whether or not a smart card has been inserted in a given slot. The way
to get this information from your terminal depends on your concrete
implementation. Perhaps the best way is to poll the terminal and hold the slot
status within a cache object. From the point-of-view of performance, the
isCardPresent() method should analyze the content of the cache object and should
not always push a status request to the reader (see also “Polling” on page 54)

The getCardID() method: getCardID() is responsible for returning the ATR of a
smart card in a given slot encapsulated in a CardID object.

As a rule, you can’t return the ATR without explicitly powering up the card. But
you should determine whether you’ve already powered up the card before.
Otherwise, you might cause a repower — equivalent to resetting the smart card —
which can prove very confusing for your application. Luckily, it’s quite easy to
check whether the card has been powered up before if you cache the ATR on every
power-up and reset this cache (set to null) every time a card is removed.

There are two getCardID methods. One has an additional parameter: int ms. This
timeout was used in previous releases and should now be ignored. It is not meant
to wait for a card insertion if no card is available in the requested slot. In this case,
you should throw a CardTerminalException with a message in plain language (e.g.:
″no card inserted″).

You should write your implementation code using the getCardID(int slotID)
method. The other getCardID(int slotID, int timeout) method with the timeout
parameter only invokes the first method without passing on the timeout value
(which is to be ignored anyway).

Sample code for a single-slot reader:
private byte[] cachedATR = null;

public CardID getCardID(int slotID)
throws CardTerminalException {

CardID cardID = null;

if (isCardPresent(slotID)) {

52 OpenCard Framework 1.2 Programmer’s Guide

// check if ATR was already read
// (if card is already powered)
if (cachedATR == null)
// card must be previously powered
cardID = new CardID(getSlot(slotID),

powerUpCard(slotID));

else
// card was already powered
cardID = new CardID(getSlot(slotID), cachedATR);

} else
// invalidate the cached ATR
cachedATR = null;

return cardID;
}

public CardID getCardID(int slotID, int timeout)
throws CardTerminalException {

return getCardID(slotID);
}

The powerUpCard() method: The powerUpCard() method employed in the
getCardID() example is a helper method which returns a byte array with the ATR
of the newly powered card. Furthermore, it encapsulates methods from the
Function Layer for powering up the smart card and obtaining the ATR from it.
The latter method is often coupled with the reader’s power-up mechanism.

The internalFeatures() method: The next thing you’ve got to do is to implement
the internalFeatures() method. This method returns possible additional features
like information about the terminal’s PIN pad or display. This information is
appended to the basic, internal information on the terminal (i.e. its name, type, and
address). The sample code in the following example illustrates this:
protected Properties internalFeatures(Properties features) {
features.put("FEATURE", "VALUE");
return features;

}

The internalReset() method: The next method you have to implement is referred
to as the internalReset() method. This method should reset and power up the
smart card. Consequently, it must return the newly-read ATR encapsulated within
a CardID object. Please don’t forget to update the cached ATR.

The internalSendAPDU() method: Last but not least, you have to implement the
internalSendAPDU() method. This method is responsible for the transfer of data
between your terminal and the reader.

The caller of the internalSendAPDU() method wraps the card-specific commands in
a CommandAPDU object. The CommandAPDU class incorporates a further method named
getBytes(), which provides a means of extracting the whole command as a byte
array.

Generally speaking, it is necessary to distinguish between two cases, depending
upon whether the card protocol is based on the T0 protocol or on the T1 protocol.

The limitation of the T0 protocol is that it doesn’t have the ability to send and
receive APDUs with both additional data fields at the same time. In this case

Chapter 7. Writing a CardTerminal 53

(known as the ″case four″ command — see ISO 7816-4), you have to initiate a
receive command after the send command in order to get all of the information
from the card.

If the card protocol is based on T1, you are provided with a reader command that
can exchange data in both directions in one step.

The following sample code disregards the issue of card protocol:
protected ResponseAPDU internalSendAPDU(int slotID,

CommandAPDU capdu, int timeout)
throws CardTerminalException {

ResponseAPDU responseAPDU = null;
byte[] receiveBuf = null;

try {
responseBuf = functionLayer.exchange(slotID,

capdu.getBytes(), timeout);
if (receiveBuf != null)
responseAPDU = new ResponseAPDU(responseBuf);

} catch (RuntimeException re) {
throw new CardTerminalException(re.toString());

} catch OpenCard Exceptions {
throw new CardTerminalException(e.toString());

}

return responseAPDU;
}

Polling
There are various different ways from which to choose in implementing a polling
mechanism:

Polling using EventGenerator/CardTerminalRegistry: EventGenerator has a
special poll thread. Via the CardTerminalRegistry, you can add your terminal to
EventGenerator’s polling list. This is the easiest method of doing this. You need
merely to implement the Pollable interface in your CardTerminal. You must then
implement your CardTerminal’s poll() method and add your terminal instance to
EventGenerator’s polling list using the CardTerminalRegistry.addPollable()
method. This should be done inside the open() method of your terminal. Please
don’t forget to remove your terminal from the polling list inside your
implementation’s close() method.

Note:
Because there’s only one polling thread for all pollable terminals, you should
endeavor to limit the time required for one poll. It is important that you
prevent your terminal from being polled if it is not yet ready to work or is
already closed.

Sample code for a single-slot reader:
private boolean cardIsInserted = false;

public void poll() throw CardTerminalException {
if (!closed) {
UpdateSlotStatus(0);// update the cache for slot 0

54 OpenCard Framework 1.2 Programmer’s Guide

if (!cardIsInserted) { // what's the last status of the terminal?
if (isCardPresent(0)) {
cardIsInserted = true;
cardInserted(0); // distribute the news to all listeners

}
} else {
if (!isCardPresent(0)) {
cardIsInserted = false;
cardRemoved(0); // distribute the news to all listeners

}
}

}

The private variable named cardIsInserted helps your terminal to decide whether
a card was found at the last poll phase. This variable is initially set to ″false″ so the
terminal starts its work with the knowledge that no card was recognized the last
time. In other words: a card has probably been inserted but has not yet been
recognized by the polling mechanism.

Polling using your own thread: You might wish to set up your own polling
thread within your terminal implementation. The advantage of this method is a
better influence over the timing. This means a better control over the frequency of
polling.

Event-driven recognition of reader states: This is the third way of implementing
the recognition of slot changes in a CardTerminal. In this case, your Function Layer
and your hardware must be capable of creating events on their own without being
polled.

Event-notification
In the example above, two method calls of event-notification were introduced: the
cardInserted() method and the cardRemoved() method. Well, what’s going on
inside the framework? Each method calls its associated method in
CardTerminalRegistry. CardTerminalRegistry (not CardTerminal) holds a list of
CardTerminalListeners (CTListener) and distributes this event to all registered
listeners.

Synchronization
What about the need to synchronize sections of your code? This is very important!
As a rule, you need a synchronization of almost every method in the function
yayer (see below). But if you synchronize entire methods belonging to the first
layer, you soon begin encountering performance problems. The easiest way to
avoid synchronization problems is to define and use a monitor object in the first
layer. You synchronize on this object in every section of your code.

Sample code:
private Object readerMonitor = "reader monitor";
.
.
void exampleReset(int slotID) throws CardTerminalException {
try {
synchronized(readerMonitor) {
functionLayer.reset(slotID);
functionLayer.powerUp(slotID);

}
} catch OpenCard Exceptions {
throw new CardTerminalException(e.toString());

} }

Chapter 7. Writing a CardTerminal 55

Now you have a overview of the implemention requirements of the first layer. In
the following section, the function layer — which provides the real knowledge
about the terminal functions — is described in detail.

The function layer
This layer could be implemented inside the interface layer or as a separate
protected class, depending upon the complexity of the implementation and your
specific requirements.

The Function Layer is needed because the interface layer knows nothing about a
concrete command sequence used for powering up a smart card. This command
could be a byte sequence like 6Eh 00h 00h 00h (this sequence sent to a GemPlus
GCR410 powers a smart card within the first slot).

It’s possible to write to code of the function layer into the same CardTerminal class
file, but it’s logically separated.

Generally speaking, you need at least the following functionalities:
v the open() and close() methods for initializing the function layer,
v a suitable Constructor matching your configuration requirements (with

parameters for the device names, address, line speed, and whatever else you
might need),

v a method for getting status information from a slot,
v a method for powering up and powering down the smart card,
v a method for ejecting a smart card (if applicable) — often in combination with

the power-down mechanism, and
v a method to initiate a smart card reset.

Note:
Your methods should be at least protected and should take into consideration
the problem of synchronization!

There are two ways of implementing this layer:
v PURE JAVA implementation and
v native code via JNI if you want to use an existing native code library (like a

DLL) to connect to your reader.

Pure Java implementation of the function layer
PURE JAVA implementation is the preferred means of implementing the function
layer.

PURE JAVA implementation has one big advantage: the reuseability of code for
multiple platforms. One possible drawback: Writing the implementation may prove
more complicated because it is also necessary to implement the communication
layer. The only thing you have to do is to provide the set of functionalities listed
above (see page 56) and to translate the requests into a format your reader
understands.

Sample code for exchanging data between your terminal and the reader:

56 OpenCard Framework 1.2 Programmer’s Guide

protected byte[] exchange(byte[] sendData, int slotID, int timeout)
throw CardTerminalException {

byte[] responseBuf = null;
byte[] tempBuf = null;

try {
// assemble exchange command for reader
byte[] sendCommand = new byte[sendData.length + 1];

// insert the exchange command identifier
// and append the content of sendData
// (only valid for T1 cards)
sendCommand[0] = (byte)0x15;
System.arraycopy(sendData, 0,

sendCommand, 1,
sendData.length);

tempBuf = communicationLayer.transmit(sendCommand);

// copy tempBuf to responseBuf
// without copying the additional status information
// appended by the reader
responseBuf = new byte[tempBuf.length - 1];
System.arraycopy(tmpBuf, 1,

responseBuf, 0,
responseBuf.length)

// remap all runtime-exceptions to CardTerminalException
} catch (RuntimeException re) {
throw new CardTerminalException(e.toString());

}
return responseBuf;

}

In this sample code, the method has no control over low-level data transfer
between your system and the reader (a task performed by the communication
layer as described on page 57.

Native code implementation of the function layer (via JNI)
Implementation of the function layer with native code support is necessary if you
want to use existing libraries (like DLLs) to get a connection to your reader. In the
most cases, you can avoid implementing a low-level transfer protocol
(communication layer). You must create a wrapper class with a corresponding
wrapper-library. For more information on writing native code, please refer to the
Java Native Interface Tutorial from JAVASOFT. You’ll find the documentation at the
following address:
http://www.javasoft.com/docs/books/tutorial/index.html

The communication layer
The communication layer encapsulates the knowledge of data exchange between
your hardware and the reader. In addition to the pure transmit methods, it is very
important to implement methods for the handling of communication errors. The
whole protocol inside this layer should be transparent for the layers above it.

In order to simplify implementation of the Communication Layer, we recommend
that you use the javax.comm extension as a basis whenever possible.

Implementing the Lockable interface
If your CardTerminal implementation is used in security sensitive scenarios where
you must ensure exclusive access to a specific application across card insertion and

Chapter 7. Writing a CardTerminal 57

card removal events you should implement the optional
opencard.opt.terminal.Lockable interface.

To implement this interface the CardTerminal must do some additional security
checks when a SlotChannel is requested or other functions on the terminal are
invoked. To reduce the task of implementing these security checks the framework
comes with a convenience abstract class
opencard.opt.terminal.AbstractLockableTerminal. This class does most of the
checking for you. If you derive your Lockable CardTerminal from this class you
only need to implement some terminal specific methods which actually do the
locking/unlocking like
v internalLock()
v internalUnlock()
v internalLockSlot()
v internalUnlockSlot()
v lockabelOpenSlotChannel()

For more details on the contract between the CardTerminal user and the
CardTerminal implementer see RFC 17-1 OCF Terminal Locking Mechanism on the
OpenCard website.

Implementation of a CardTerminalFactory
To get a working implementation of a CardTerminalFactory, you need merely write
a few lines of code as presented in the example below. The primary purpose of
CardTerminalFactory is to analyze the given configuration data (String[]
terminalInfo in createCardTerminals()), to search for a known terminal type, and
to instantiate the terminal with the associated terminal name.

Note:
The terminal name must be unique within the OPENCARD FRAMEWORK.

If you have extended the requirements made of your factory — for example by
requiring the connection to a resource manager with the simultaneous instantiation
of multiple terminals — you’ll probably need the open() and close() methods for
initialization (see also “The open() and close() methods” on page 52).

Using createCardTerminals(), you’re able to simultaneously create multiple
terminals, thus enabling you to get a list from an alien resource manager about its
registered terminals and instantiate them in one piece.

The following sample code pertains to a terminal with one additional parameter:
public class SiemensCardTerminalFactory

implements CardTerminalFactory {

public void createCardTerminals(CardTerminalRegistry ctr,
String[] terminalInfo)

throws CardTerminalException,
TerminalInitException {

// check for minimal parameter requirements
if (terminalInfo.length < 2)

58 OpenCard Framework 1.2 Programmer’s Guide

throw new TerminalInitException(
"at least 2 parameters necessary"
+ " to identify the terminal");

// check the given type
if (terminalInfo[1].equals("MYMODEL")) {

// optional: check for an additional parameters...
if (terminalInfo.length != 3)
throw new TerminalInitException(

"createCardTerminals: "
+ "Factory needs 3 parameters "
+ "for snuggle terminal");

// creates the terminal instance
// and registers to the CardTerminalRegistry
ctr.add(new MyCardTerminal(terminalInfo[TERMINAL_NAME_ENTRY],

terminalInfo[TERMINAL_TYPE_ENTRY],
terminalInfo[TERMINAL_ADDRESS_ENTRY]));
// these three TERMINAL variables are

defined in CardTerminalFactory
} else

throw new TerminalInitException("Type unknown: "
+ terminalInfo[TERMINAL_NAME_ENTRY]);

}

public void open() throws CardTerminalException {}
public void close() throws CardTerminalException {}

}

The code above pertains to an example factory which provides a skeleton for you
to start. The most interesting method is createCardTerminals(). The factory needs
at least two parameters: the reference to the CardTerminalRegistry and a string
array (terminalInfo) with a list of configuration parameters of one terminal entry.
Thus, the terminal name could be terminalInfo[0], and so on.

Note:
It is important that you catch all possible exceptions and remap them into
CardTerminalExceptions. This recommendation pertains to all non-private
methods. Otherwise, the application described above has to catch exceptions
which are not derived from CardTerminalException.

Chapter 7. Writing a CardTerminal 59

60 OpenCard Framework 1.2 Programmer’s Guide

Chapter 8. Writing a card service

The OPENCARD FRAMEWORK CardService level implements a standard interface for use by
the application programmer, hiding smart card specifics. CardService generates
application program data units (APDU’s) to implement high-level API functions. In this
section, we’ll show you how to develop a particular card service and a corresponding card
service factory.

CardService environment — overview
Looking up towards the application programmer, a card service implements a
programming interface to provide functionality to applications. One goal of
OPENCARD is standardization of these application interfaces.

Also, an OpenCard CardService implementation must provide functions that are
used by the framework itself for administration purposes. Default framework
interfaces are provided through inheritance from standard classes.

OCF provides methods and classes for use by the CardService implementation to
access the card. The major classes in this category are CardChannel and
CardService.

A concept for secure messaging is provided by OPENCARD. Although the actual
implementation of secure messaging will not be covered here, the OPENCARD

provisions for secure messaging will be explained in enough detail to allow you to
implement secure messaging using your cryptographic code.

Associated with each CardService implementation is a CardServiceFactory that is
capable of constructing it. CardServiceFactory must be able to identify the card or
cards for which it can construct instances of CardService. When a smart card is
inserted into the reader, the OPENCARD FRAMEWORK goes through its list of registered
card service factories until it finds one that can handle the card.

Application interfaces
The application interface is the set of methods that the CardService
implementation makes available to the application program. These are typically
high-level functions that fit well into the Java programming paradigm.

The CardService implementation has the task of mapping the method call to smart
card APDU’s that are communicated to the card. One method may cause one or
many command - response sequences to be carried out with the card.

When a new CardService implementation is defined, any desired functionality may
be implemented. Standard OPENCARD interfaces may be used, or an application
specific interface may be developed. The use of standard interfaces facilitates smart
card interoperability, where application specific interfaces can provide more
customized functionality.

Using standard CardService interfaces
In order to understand how the use of standard interfaces aids interoperability, it is
helpful to review how CardService interfaces are used by the application.

61

After OCF has been started, the waitForCard() method can be used to wait for a
card to be inserted that implements the desired interface. In the code fragment
below, the application instantiates a FileAccessCardService (this service provides
access to ISO file system cards) for an inserted card.
...
// Initialize the framework
SmartCard.start ();

...
// Assume card has been inserted, 'card' is SmartCard object.
// Instantiate file access card service.
FileAccessCardService fs = (FileAccessCardService)

card.getCardService(FileAccessCardService.class);
...

When a JAVA class is passed to the SmartCard object getCardService() method in
this manner, OCF looks for a CardServiceFactory that can create an object
implementing the specified class for the inserted card. If the JAVA class parameter
represents an interface object rather than a class object, the returned CardService
object will implement the specified application interface.

The standard application interfaces can be implemented for any smart card. In
order to do this, a class implementing the interface must be written. The
declaration statement for this class could appear as in the following code fragment.
The accompanying CardServiceFactory (for example
com.ibm.opencard.factory.MFCCardServiceFactory), will create an instance of
MFCFileAccess when called upon to instantiate a FileAccessCardService object.
public class MFCFileAccess extends MFCCardService implements FileAccessCardService {
... (implementation)
}

Naturally, this mechanism can be used to implement a FileAccessCardService for
any smart card offering the required functionality, and any number such
CardServices could be registered in a single OPENCARD installation. The SmartCard
getCardService() method will search through the registered factories to obtain the
correct FileAccessCardService implementation for the inserted card.

Standard application interfaces
In the process of creating the OPENCARD FRAMEWORK reference implementation, a
number of standard CardService interfaces have been defined. For detailed
documentation on these interfaces, please see the API documentation.
v opencard.opt.signature.SignatureCardService provides an interface for

digitally signing data and hashes using a public key algorithm and private key
stored on a smart card.

v opencard.opt.signature.KeyImportCardService allows new PKA private and
public keys to be stored on a smart card.

v opencard.opt.signature.KeyGenerationCardService supports generation of new
PKA key pairs.

v opencard.opt.applet.mgmt.AppletAccessCardService allows applets on the card
to be listed and to getthe information required to select an applet.

v opencard.opt.iso.fs.FileAccessCardService provides for ISO 7816-4 file access
functionality.

v opencard.opt.iso.fs.FileSystemCardService supports file creation, deletion,
invalidation, and rehabilitation for file system cards.

62 OpenCard Framework 1.2 Programmer’s Guide

Defining your own interface
It is possible to define card services that implement any required interface - not
just the standard interfaces described above. This can be done simp ly by
extending the CardService class (described in following sections).
public class FooBarCardService extends CardService {

public FooBar getFooBar() { ... implementation ... }
..... (rest of implementation)

}

Interface standardization
The CardService work group of the OPENCARD CONSORTIUM is the official board for
the approval of new standard services. If you define a new interface that you
believe to be of general interest to the OPENCARD community, you are encouraged
to submit it for standardization. Please contact the OPENCARD CONSORTIUM through
the http://www.opencard.org web site for further information.

Framework interfaces
A JAVA class becomes an OCF card service by inheriting from the CardService class.
The CardService class provides methods for use by the application as well as
functions used by the card service implementation.

There are also several methods meant for administrative use by the OPENCARD

FRAMEWORK itself. These methods will not be covered here.

CardService methods for implementation use
Communication with the card is carried out through the framework CardChannel
class. CardChannel must be allocated before use and de-allocated after use. To do
this, three functions are necessary.
v allocateCardChannel() makes sure that CardChannel is available for

communication with the card. If another thread is already communicating with
the card, this function will block until the active thread releases CardChannel.
After successful completion of this call, the current thread will have exclusive
access to CardChannel.

v getCardChannel() returns a reference to a CardChannel object that can be used
for communication with the card.

v releaseCardChannel() - signals that CardService is done using CardChannel. It
should be noted that this call does not destroy the CardChannel object, but
merely signals to CardServiceScheduler that CardService is finished
communicating with the card.

Another method that can be useful is getCHVDialog(). This function returns a
cardholder verification dialog object that can be passed into the CardChannel object
when communicating with the card.

CardService methods for application use
v The getCard() method returns a reference to the smart card object associated

with this CardService.
v The setCHVDialog() method allows the application to pass a CHVDialog object

that will be used to obtain the password from the user.

Chapter 8. Writing a card service 63

CardServiceInterface
The methods for application use are also described by the CardServiceInterface
Java class. This convenience interface allows card service programmers to include
access to the setCHVDialog() and getCard() functions in their interfaces, which
obviates the need to downcast. The interface definition extends
CardServiceInterface, and the implementation extends CardService.

Subclassing CardService
When designing OPENCARD, care was taken to keep dependencies on external
packages to a minimum. In particular, dependencies on the JAVA reflection API
were avoided, since this package will likely not be available on embedded devices.

This resulted in a somewhat non-intuitive mechanism for instantiating card
services. Instantiation is performed by CardServiceFactory in two steps. First, the
default constructor runs, and then the initialize(CardServiceScheduler,
SmartCard, boolean) method is called.

If a default constructor is provided, it is important that super() be called.
Similarly, the initialize() method can be overridden to perform initialization of
the implementation, but if this is done, it is required that super.initialize() be
called.

Example

These code fragments illustrate the concepts presented in this section.
// declare interface, allowing access to application relevant CardService functions -
public interface FooBarCardService extends CardServiceInterface {

public FooBar getFooBar();
}

// class implementing the card service interface -
public class BobsFooBarCardService extends CardService implements

FooBarCardService {

// default constructor - 1st step of two-step construction -
public void BobsFooBarCardService() {super();}

// 2nd step of two-step construction -
protected void initialize(CardServiceScheduler sched,

SmartCard card,
booloean blocking) {

super.initialize(sched, card, blocking);
.... (initialize implementation)

}

public FooBar getFooBar() {
.... perform setup stuff ...

// allocate CardChannel, communicate with card, release channel -
try {

allocateCardChannel();
CardChannel chan = getCardChannel();
.... do some work with card ... make a FooBar ...

}
catch (... various exceptions ...) { ... do appropriate thing ... }
finally {releaseCardChannel();}
return foobar;

}
}

64 OpenCard Framework 1.2 Programmer’s Guide

CardChannel
This class is the primary means through which the card service implementation
communicates with the smart card. Just as the SmartCard object represents the
inserted smart card, CardChannel abstracts the ISO 7816-4 logical channel concept.
As such, there will be one CardChannel object for each logical channel supported
by the card.

Before use of CardChannel is described, several helper classes and concepts must be
covered.

The APDU classes
The CommandAPDU and ResponseAPDU helper classes are used by CardChannel for
communication with the card. As can be imagined, CommandAPDU is sent to the card,
and ResponseAPDU contains the data returned by the card.

These classes provide methods for accessing and setting the data to be sent to the
card on a byte and byte array basis. In addition, ResponseAPDU contains methods
for accessing the status word bytes returned by the card. Both APDU classes are
defined so that they can be instantiated once and reused for subsequent calls. This
feature can improve performance since it reduces the number of objects created
and destroyed. To do this, the APDU is created with the maximum expected buffer
size during the initialization phase. Each time the APDU is used, the length is first
reset to 0, and then the new data is appended.
... (initialization) ...
CommandAPDU cmd = new CommandAPDU(MAX_SIZE);
...

... (before each use) ...
cmd.setLength(0);
cmd.append(NEW_APDU_BYTES);

The CardChannel state
The CardChannel state allows one arbitrary object to be associated with the channel.
Since CardServiceScheduler maintains the CardChannel objects even after they have
been released by the card services, the object stored as channel state is also
maintained across card service calls.

This mechanism is also useful for passing data between related card services. For
instance, data about the last selected application or the last security state reached
could be stored. Naturally, card services communicating in this manner must agree
on a common data representation.

The state is stored using the setState() and read using the getState() methods.

Cardholder verification
The OPENCARD FRAMEWORK was designed to provide a wide range of flexibility in
obtaining CHV (cardholder verification) from the user. Depending on the card
terminal device capabilities and the application, the cardholder verification may be
obtained from different sources.

Some card terminal devices are equipped with a PIN pad and are capable of
accepting CHV input from the user and passing it directly to the card. The OCF
card terminal package provides a special interface
(opencard.core.terminal.VerifiedAPDUInterface) that allows such a device to be
recognized and used in a standard manner.

Chapter 8. Writing a card service 65

Since the APDU used for cardholder verification is card specific, the device must
be provided with a partial APDU along with information that allows the device to
complete the APDU by inserting the CHV, encoded properly, at the correct
location. The completed APDU is then sent to the card and the resulting response
APDU is returned to the card service implementation.

When the CHV is to be obtained from a GUI running on a workstation, the
concept is similar. Again the card service implementation must generate a partial
APDU and provide information on how to encode the CHV information and insert
it into the partial APDU for transmission to the card.

In either case, the descriptive information for inserting the CHV information into
the partial cardholder verification APDU must be placed in the CHVControl class,
which is a simple container for such information. Required data is CHV offset
within the APDU and the name of the encoding mechanism to be used. Coding
mechanism names are described by the CHVEncoder interface. The other fields may
be set to null when not needed.

The OPENCARD FRAMEWORK provides a default GUI dialog box for obtaining the
cardholder verification when running on a workstation with full AWT (ADVANCED

WINDOWING TOOLKIT) capability. It is recognized, however, that some applications will
require a password entry dialog that is more closely integrated (from the
look-and-feel point of view) into the application.

By implementing the CHVDialog interface and passing the implementation class to
the card service using the setCHVDialog() method, the application can override
OpenCardDefaultCHVDialog.

The CHVDialog contains only one method - getCHV(int number). This method
returns a string representing the CHV indicated by the CHV number. Although
this interface will often be implemented by some type of GUI dialog or window
class, CHVDialog itself has no dependencies on the AWT package. This means that
the class implementing CHVDialog is free to obtain the CHV string from any source
- from a command line interface, from a constant string in the source code (Yikes!!),
or even from a PIN pad if OPENCARD happens to be running on an actual
high-function terminal platform.

Communicating with the card
After the card service implementation has successfully allocated and obtained a
card channel, the implementation has exclusive access to the card until the channel
is released.

The sendCommandAPDU() method provides the most straightforward possibility for a
card service to communicate with the card. The command APDU provided as a
parameter is sent to the card, and the card response is returned in a ResponseAPDU.

The sendVerifiedAPDU() method is used when cardholder verification information
is to be sent to the card. This method requires a number of parameters:
v a partial command APDU,
v CHVControl parameters,
v a CHVDialog and, last but not least,
v a time-out value.

To use this method, a partial command APDU for cardholder verification along
with a descriptive CHVControl object must be created as described in the preceding

66 OpenCard Framework 1.2 Programmer’s Guide

section. The CHVDialog set by the application is retrieved from the base
CardService class using its getCHVDialog() method.

When executing the sendVerifiedAPDU() method, the CHVControl class will access
the card terminal to determine its capabilities. If the terminal device is capable of
performing CHV, the CHVControl information and the partial APDU will be sent to
the terminal. Otherwise, if a CHVDialog object was set, it will be used. Finally, if all
else fails, OpenCardDefaultCHVDialog will be used. The card service implementation
is not involved in this decision.

Example

The previous example is enhanced with the main concepts from this section.
// class implementing the card service interface -
public class BobsFooBarCardService extends CardService implements FooBarCardService {

private CommandAPDU cmd = new CommandAPDU(MAX_SIZE);
private ResponseAPDU rsp;

... do initialization

public FooBar getFooBar() {
// allocate CardChannel, communicate with card, release channel -
try {

allocateCardChannel();
CardChannel chan = getCardChannel();

// carry out cardholder verification
cmd.setLength(0);
cmd.append(CHV_APDU_BYTES);
CHVControl chvctrl = new CHVControl("Enter your password", 1,

CHVEncoder.STRING_ENCODING, 0,
null);

CHVDialog chvdlg = getCHVDialog();
rsp = chan.sendVerifiedAPDU(cmd, chvctrl, chvdlg, -1);

.... check sw1 & sw2, do some work with card ... make a FooBar ...
}
catch (... various exceptions ...) { ... do appropriate thing ... }
finally {releaseCardChannel();}

}
}

Implementing secure messaging
Sometimes secure messaging is required to access smart card files. In secure
messaging, cryptographic functions are used to protect and authenticate the data
passed to and from the card. Since the card service implementation maps function
calls from the application to one or more APDU command/response pairs, the
implementation must be aware of secure messaging if supported by the card.
However, the card service implementation will not in general implement its own
cryptographic functions. The cryptographic functions can be installation and/or
application specific. Also, the cryptographic keys needed to access files on the card
are application dependent. The algorithms and keys may be available in software
and data format in the client machine, or they may be contained in a security
access module (SAM). There have been a number of attempts to create a
cryptographic framework that encapsulates key and algorithm storage, notably
PKCS#11, CDSA, and the JAVA CRYPTOGRAPHIC ARCHITECTURE. Rather than defining a
new cryptographic framework specifically for use in secure messaging, OPENCARD

defines a minimal infrastructure that allows cryptographic algorithms and data to
be handled as such without constraining the interface.

Chapter 8. Writing a card service 67

Credentials
The Credential interface defines no members, but is used to tag classes containing
cryptographic keys and/or algorithms. Implementers of card services requiring
secure messaging will have to implement or obtain appropriate credentials from
CredentialStore objects.

Credential interfaces will be defined (by the card service implementer or perhaps
by a third-party provider) to provide appropriate functionality for the card service
at hand. Depending on availability, credentials can implement the cryptographic
functionality directly or can access a security module.

The CredentialStore class can be used as a container for related credentials. This
abstract class must be extended to support a specific card operating system, since
the method through which keys are identified and selected vary from card to card.
Customization of the CredentialStore class requires work in two areas:
1. The boolean supports(CardID) method of the CredentialStore class must be

implemented. This is required for identification of the store since it is card
operating system dependent.

2. An identifier object for the keys contained in the credential store must be
defined. This identifier is used with the storeCredential() and
fetchCredential() methods to specify the desired credential. Typically, this
identifier class will be defined by the card service implementer and will
abstract the manner in which keys are specified on the card. The only
restriction on the identifier definition is that hashCode() and equals() methods
be defined appropriately for use in a hash table.

Card interoperability
Credential as well as CredentialStore being card service implementation specific,
it would seem difficult to achieve card interoperability.

To help with this, another concept - CredentialBag - was introduced.
CredentialBag is simply a container class for CredentialStore objects. The
addCredentialStore() and getCredentialStore() methods allow objects to be
stored and retrieved.

The CredentialStore objects are retrieved from CredentialBag by CardID. This
allows the card service implementation to query the key bag for an appropriate
key store object. To achieve card interoperability, the application fills CredentialBag
with key stores for all supported cards. After a card has been inserted and the
application has obtained a card service that implements secure messaging, the
application will pass CredentialBag to the card service. The card service
implementation will use CredentialBag’s retrieval functions to obtain an
appropriate CredentialStore for the inserted card.

Interfaces for CardService
On a smart card, a security domain is defined by a set of cryptographic credentials.
An object on the card - a file for example - can belong to one or more security
domains. In fact, on some smart cards, notably the IBM MFC cards, an object can
belong to a different security domain for each operation allowed on the object. An
object can belong to one security domain for a read binary operation and to another
for an update operation.

On a smart card, the security domain is specified by some characteristic. The
characteristic specifying the security domain will differ depending on card type.
For example, it will be different for JAVACARD-based smart cards than for ISO file
system based smart cards.

68 OpenCard Framework 1.2 Programmer’s Guide

This concept of security domain is abstracted in the OPENCARD FRAMEWORK as the
SecurityDomain interface. To allow support for varying card types, it is defined as
a tag interface only.

The SecureService interface allows applications to pass credential bags to the card
service. All card services that provide secure messaging functionality must
implement the SecureService interface. This interface provides one new function -
provideCredential() - that accepts a CredentialBag and a SecurityDomain object
as parameters. The security domain object specifies the object characteristic for
which the credential bag is valid.

File system based cards typically use a partial subdirectory in which an object
resides to specify the security domain. For this reason, the
opencard.opt.iso.fs.CardFilePath class implements the SecurityDomain interface.
For such cards, the CardFilePath object would represent the object characteristic
for which a credential bag is valid. When performing secure messaging for file
access, the card service implementation would select the credential bag to use
based on the active card file path.

CardServiceFactory

Registry mechanism overview
The OPENCARD FRAMEWORK requires a CardServiceFactory to instantiate a card
service. The factory is in a sense the middleman between CardServiceRegistry and
card services. A CardServiceFactory knows how to create card services for a smart
card or for a family of cards.

When the application requests a card service, CardServiceRegistry goes through
its list of registered instances of CardServiceFactory, querying each in turn
whether it supports the inserted card. When aCardServiceFactory supporting the
card is found, the registry attempts to use that factory to instantiate the requested
card service. If successful, the card service is returned to the caller; otherwise the
search continues.

Implementing instances of CardServiceFactory
All instances of CardServiceFactory must inherit from the
opencard.core.service.CardServiceFactory common base class. The interface of
this base class has changed between OCF 1.1 and OCF 1.1.1. Existing card service
factories still implementing the outdated interface should now inherit from the
opencard.opt.service.OCF11CardServiceFactory common base class.

Card service factories implemented with OCF 1.1.1 or later must overwrite two
abstract methods that are used by the OPENCARD FRAMEWORK to instantiate services -
getCardType() and getClasses(). The constructor of the CardServiceFactory can
be empty.

The getCardType() method accepts a CardID object which basically represents the
ATR obtained from the card and returns a CardType.

The card type object returned should either be the reserved instance
CardType.UNSUPPORTED or another instance of card type that allows the
factory’s getClasses method to decide which card services can be instantiated. If
the card service factory supports a whole family of cards from one card
manufacturer the card type could for example contain the information about the
card operating system version of the inserted card. If the CardID is not sufficient to

Chapter 8. Writing a card service 69

determine the card type the CardServiceScheduler can be used to allocate a
CardChannel to communicate with the card.

The getClasses() accepts the CardType object determined in the previous step as a
parameter and returns an enumeration of card services supported by the factory
for the specified card. This method is used by the CardServiceFactory superclass
method called by CardServiceRegistry when instantiating a CardService class for
CardServiceRegistry.

Example

The following example code shows the implementation of the factory that supports
theFooBarCardService:
public class FooBarCardServiceFactory extends CardServiceFactory {
public FooBarFactory () {}

// implement abstract method -
protected CardType getCardType(CardID cid,

CardServiceScheduler scheduler)
throws CardTerminalException

{

byte[] historicalBytes = cid.getHistoricals();
// analyze historicals
if ((historicalBytes[0] != ...) || (historicalBytes[1] != ...))
return CardType.UNSUPPORTED;

// find out information about card
...
int cardOSVersion = ...;

return new CardType(cardOSVersion);
}

// defines supported services
static {

foo_classes = new Vector();
foo_classes.addElement(FooBarCardSvc.class);

}

protected Enumeration getClasses(CardType type)
{

switch (type.getType()) {
case ...:
return foo_classes.elements();

case...:
...

}

PrimaryCardServiceFactory
Of all the registered factories that support a specific smart card, one and only one
may implement the PrimaryCardServiceFactory interface. When a card is first
inserted, CardServiceRegistry will call the setupSmartCard(SlotChannel) method
of the primary card service factory for that card.

Using the SlotChannel object provided by the card service registry,
PrimaryCardServiceFactory can communicate with the card in order to carry out
any required initialization.

One possible use for this feature would be communication speed selection.

70 OpenCard Framework 1.2 Programmer’s Guide

Support for JavaCards and other Multi Application Cards
In this Chapter, we present a set of classes that can be used to implement card
services for JavaCards and other Multi Application Cards, e.g. EMV-compliant
smart cards. These cards have in common that they allow for application selection
by application identifier (AID). In OCF 1.2, we added the package
opencard.opt.applet to support implementation of card services in the form of
proxy classes for applets on JavaCards, applications on EMV/ISO cards etc. The
applet package contains base card service classes that allow for multiple threads to
concurrently use derived smart card application proxies. Multiple proxy instances
associated with the same applet on the card can exist at the same time and are
properly synchronized. Selection and deselection of applications on the card is
detected and handled.

State Objects
As applications and the card itself have a state that is affected by application
selection, a representation for these states is needed. OCF 1.2 provides base classes
from which programmers may derive state classes for their own applications or
cards. We differentiate between application state (AppletState) and card state
(CardState).

AppletState
Application states are to be used for representing the state of an application to
applet proxies associated with that application. The state of an application may
reflect whether external authentiction has been performed since selection or wether
a password has been provided, for example.

CardState
A card state object encapsulates the state of a multi application card. It must at
least contain information about the currently selected application. OCF provides a
base class for card states, named CardState. All instances of the class
BasicAppletCardService associated with the same physical card share a common
CardState object to ensure a consistent view.

Selection
Applet selection is a basic mechanism that is required by card services for multi
application cards. OCF provides an interface for applet selection and an
ISO-conformant implementation for this interface.

AppletSelector
This interface defines the minimum selection features that are necessary for
working with card-resident applets. It specifies a low-level selectApplet method
that will be called by CardServices. The caller must provide an already allocated
CardChannel for communicating with the card.

ISOAppletSelector
The class ISOAppletSelector is a very simple helper class that implements the
interface AppletSelector. It only provides the ″selectApplet″ functionality as
specified in AppletSelector. It is a basic implementation based on ISO7816-4 and
ISO7816-5 that does not check warning/errors code but provide them to caller.

Proxy Base Classes
The following classes provide a mechanism to transparently perform the selection
of applets when needed.

Chapter 8. Writing a card service 71

BasicAppletCardService
The class BasicApppletCardService offers methods to applications or proxies
derived from it, which sends a given command APDU to the card applet identified
by the given application identifier and returns the result APDU. See also the
description of CardState and AppletState.

AppletProxy
AppletProxy is the base class for all applet proxies. This class is derived from the
class BasicAppletCardService. It is aware of the applet to which the applet proxy
is associated. It provides methods similar to those of the base class, except that the
application identifier parameter is not necessary because every AppletProxy knows
the AID of the applet associated with it.

Support for SCQL Database Smart Cards
In this Chapter, we present a set of classes that can be used to implement card
services for ″Database Smart Cards″.

What we call here ″Database smart cards″ are smart cards (or applets) that
integrates an engine of SCQL (Smart Card Query Language) relational data base.
The database concept is based on SQL (ISO 9075).

Such cards allow to store personal data in database structures in a secure way.
They include security mechanisms such as PIN code authentication,
login/password authentication or internal/external authentication via a DES
algorithm enabling the user to secure his/her personal data optimally.

As specified by the [ISO 7816-7] international standard, the dialog with the card is
based on exchanges of APDU commands which are structured as byte arrays. The
set of commands managed by the card (at database level) is a subset of the SQL-92
command set.

As of today, this subset does not authorize neither join nor multiple predicates in
’where’ clauses. In spite of the numerous physical constraints due to the memory
size of the database engine and databases themselves, the provided functionalities
are nearly similar to those offered by a classical database. Indeed, this type of card
can manage users, users profiles, privileges about the different objects of the
base(s), transactions (commit and rollback notions) and tables/views/dictionaries.

Please refer to the ISO norm [ISO 7816-7] for more details on database smart cards.

Package features
In OCF 1.2, we added the opencard.opt.database package to support
implementation of card services dedicated to Database Smart Cards.

Layers of abstractions
The opencard.opt.database package is composed of two layers of abstractions for
helping to develop CardServices for Database Smart Cards, i.e.:
1. an interface layer, DatabaseCardService, to allow interoperability among

competitive implementations for smart cards or applets that all respect
compliance with [ISO 7816-7], and

2. a general purpose concrete implementation, BasicDatabase, that can be used
out-of-the-box by programmers of applications that wish to use a database
card, and that can also be considered as a base class for the implementation of
specific CardServices. In both cases, the programming effort will be reduced by

72 OpenCard Framework 1.2 Programmer’s Guide

the usage of the framework, and also if everybody uses the same basic
implementation and propose enhancements for it, the quality of this component
will increase.

Miscellaneous
In addition, the package also provides:
v a set of specialized exceptions, all inheriting from the SCQLException class (the

base class for all exceptions related to the use of a SCQL Database Smart Card),
v DataObject, a utility class used by BasicDatabase for parsing parameters

according to the standard (e.g., privileges, user profiles, etc.), and
v SecurityAttribute, the base class for security attributes DO (i.e., Data Objects)

as specified by the standard. It is currently mostly a wrapper for a byte array, as
the ISO7816-7 standard does not specify what information should be provided in
a security attribute DO, and in what form. In the case where the chosen
semantics is to use the ASCII codes of a ″String″ password, a constructor is
provided in addition to the default one (using a byte array).

The next sections describe in details the interface of the package and an example of
use of the basic implementation.

Interface Details
The most important part of the provided API is the DatabaseCardService interface.
This Java interface defines:
v Constants as specified by the 7816-7 norm (i.e., class byte, coding for SCQL,

transactions, or user operations, coding for comparison operators, coding for
privileges, and error codes),

v Constants as specified by the 7816-6 norm (i.e., TLV tag values for card holder
certificate and name) that are used for encoding a PRESENT_USER operation with
security attributes, and

v Methods to handle database smart cards, as specified by the 7816-7 norm:
createTable, createView, createDictionary, dropTable, dropView, grant,
revoke, declareCursor, open, next, fetch, fetchNext, insert, update,
delete, begin, commit, rollback, presentUser, createUser, deleteUser. The
method names are the ones that are specified by the norm, except that they also
follow standard Java naming guidelines. Please refer to the [ISO 7816-7] ISO
norm for more details about these commands semantics.

Example of use
This part gives a detailed description of the way the BasicDatabase or one of its
sub-class can be used. This allows to understand their operating mode and to
observe how easy it is to use them. In order to do this, we will take the example of
a simple Java program which is connected to a database card and which performs
a few SCQL operations.

Program
The program source code is listed below:
import opencard.opt.database.*;

public class TestDatabase {

public static void main (String [] args) {
int i;
String[] result;

try {

Chapter 8. Writing a card service 73

// Initialize the framework
SmartCard.start ();
System.out.println ("Waiting for a 7816-7 SCQL smart card...");
SmartCard sm

= SmartCard.waitForCard (new CardRequest(BasicDatabase.class));

// Get a card service and perform SCQL commands
BasicDatabase cs = (BasicDatabase)

sm.getCardService(BasicDatabase.class, true);

// Try to send a PRESENT USER to the card
cs.presentUser("GUEST", new SecurityAttribute("guest"));

// Try to send SCQL commands to the card to read the DIARY table
cs.declareCursor("DIARY","*","");
cs.open();
try {

while (true) {
result = cs.fetch();
for (i=0 ; i < result.length ; i++) {

System.out.println (" - DIARY("+i+") = "+result[i]);
}

; System.out.println ("---");
cs.next();

}
} catch (EndOfTableReachedException scqle) {

System.out.println ("");
System.out.println ("Warning: End of table reached.");

}

// Try to create a new table 'FOOTABLE'
try {

cs.createTable("FOOTABLE", "FOO,BAR,GEE", new SecurityAttribute(""));
} catch (ObjectAlreadyExistsException scqle) {

System.out.println ("Warning: Table already exists...");
}
cs.insert("FOOTABLE", "foo1,bar1,gee1");

// Shutdown the framework
SmartCard.shutdown ();

}
catch (SCQLException scqle) {

System.out.println ("SCQL Exception: ");
scqle.printStackTrace();
if (scqle.getMessage () != null) {

System.out.println ("details:");
System.out.println (scqle.getMessage ());

}
}
catch (CardTerminalException cte) {

System.out.println ("CardTerminalException: ");
System.out.println (cte.getMessage ());

}
}

}

Description
First of all, it imports the required classes, i.e., the classes and interface of the
opencard.opt.database package.
import opencard.opt.database.*;

The next line allows Framework initialization.
SmartCard.start ();

74 OpenCard Framework 1.2 Programmer’s Guide

Then, a database smart card is waited to be inserted in the card reader. This is a
blocking method call.

SmartCard sm
= SmartCard.waitForCard (new CardRequest(BasicDatabase.class));

The next command allows to instantiate a CardService for the database smart card.
Instantiation is processed by the relevant factory.

BasicDatabase cs = (BasicDatabase)
sm.getCardService(BasicDatabase.class, true);

The presentUser(login, securityAttribute) command allows to be connected
with the database.

cs.presentUser("GUEST", new SecurityAttribute("guest"));

A cursor is declared on an existing table. This cursor actually selects all the
columns of the view (i.e., ″*″). There is no limit on selecting (i.e., the third
parameter remains empty).

cs.declareCursor("DIARY","*","");

The information which meets the conditions defined by the cursor is retrieved via
a loop in which each line pointed out by the cursor is read (fetch() command).
Then, the cursor moves on the next line and meets the conditions (next()
command). The result returned by the fetch() command is simply displayed. This
command returns an array of character string, each column of the table
corresponds to a value located in a column of the table in the database.

try {
while (true) {

result = cs.fetch();
for (i=0 ; i < result.length ; i++) {

System.out.println (" - DIARY("+i+") = "+result[i]);
}
System.out.println ("---");
cs.next();

}

The result display loop is stopped when the CardService returns an exception
indicating that the end of the table has been reached (i.e.,
EndOfTableReachedException).

} catch (EndOfTableReachedException scqle) {

A ″FOOTABLE″ table containing 3 columns entitled ″FOO″, ″BAR″, and ″GEE″ is
created.

try {
cs.createTable("FOOTABLE", "FOO,BAR,GEE", new SecurityAttribute(""));

Via the following instructions, one line is inserted in the ″FOOTABLE″ table.
cs.insert("FOOTABLE", "foo1,bar1,gee1");

At the end, the Framework is shutdown.
SmartCard.shutdown ();

As we can observe, the use of such CardServices remains simple and accessible by
all developers having a minimum knowledge about database smart cards.

Chapter 8. Writing a card service 75

In addition, an application can request a CardService implementing the
opencard.opt.database.DatabaseCardService, thus ensuring interoperability with
all database smart cards or applets that are compliant with the ISO 7816-7
standard.

Acknowledgements
We are indebted to numerous colleagues from BULL, GEMPLUS, IBM, SCHLUMBERGER,
and SUN for their feedback and constructive criticism in the design and
implementation phases — without their contributions, support, and enthusiasm,
OCF would probably not have become an industry standard.

76 OpenCard Framework 1.2 Programmer’s Guide

Glossary

The following is a glossary of OPENCARD-related
terms.

APDU. An acronym for application protocol data unit.
Interactions with smart cards occur by exchanging pairs
of APDUs and are initiated by the external application.

API. An acronym for application programming
interface.

applet. A JAVA-based ″mini-application″ which runs in
a browser on the client side.

application. As defined by ISO 7816, the card-resident
component (consisting of data and functions) of
software interacting with the card-external component.

application developer. A software programmer
specializing in the development of applications. One of
the chief beneficiaries of the OPENCARD FRAMEWORK.

AppletAccessCardService. A special OCF card service
for dealing with the various different applets residing
on a smart card.

asymmetric algorithm. A type of cryptographic
operation using one key for encrypting data and
another key for decrypting the resultant encrypted
data. Together, the two keys are referred to as a key pair
(also known as public/private keys).

ATR. An acronym for answer-to-reset. The ATR is the
initial information emitted by a smart card upon being
reset and powered up.

authentication. The process of verifying the identity of
the participants in an exchange of electronic data.
When the card-external application authenticates itself
to the card-resident application, this is called External
Authentication. Conversely, when the card-resident
application authenticates itself to the card-external
application, this is referred to as Internal
Authentication. Cardholder Verification (CHV) is when
the cardholder authenticates him or herself to the card.

authorization. The security process to decide whether
a service can be given or not.

Card Acceptance Device (CAD). Synonym for card
reader or card terminal.

card authentication. The security process for verifying
the genuineness of an inserted smart card.

cardholder. The legitimate holder of a smart card.

Cardholder Verification (CHV). The process of
checking whether the person presenting a card to the

card system is indeed the legitimate holder. Usually, a
secret number or password known only to the
cardholder is used.

CardID. An OCF class for the identification of the card
type based on the card’s ATR.

card initialization. The process of writing
initialization data to the smart card’s EEPROM. The
EEPROM image generated during layout definition is
then transferred to the smart card.

card issuer. An institution which issues cards to
cardholders.

cardlet. A word formed from two parts: (smart) card
and applet.

CardManagementService. A special OCF card service
defining a high-level API for installing, removing,
blocking, and unblocking the various different
applications residing on a card in an
issuer-independent fashion.

Card Operating System (COS). The microcode
contained in a smart card’s ROM, used for
communicating with the smart card, managing security,
and managing data in the smart card.

card personalization. The process of writing
cardholder-specific data (e.g. serial number, cardholder’s
name) to the smart card. After card initialization, the
smart card’s EEPROM reflects the basic data structure
as defined in the layout definition and may contain some
initial data that is constant across all cards. During
personalization, the information peculiar to an
individual cardholder is written to the card prior to
issuing it.

card reader. An I/O device attached to the computing
platform into which the smart card is inserted. Roughly
synonymous withCard Acceptance Device (CAD), Interface
Device (IFD), or card terminal.

card recognition. The process of checking whether an
inserted smart card has the correct physical and
electrical characteristics.

CardService. Any one of a variety of OCF components
which make smart card functions available to the
application programmer.

CardServiceFactory. Associated with each instance of
CardService is an instance of CardServiceFactory
capable of constructing it.

CardService layer. A layer of OCF which provides the
basic infrastructure for accessing card services.

77

CardServiceRegistry. A system-wide OCF class for
keeping track of the various different instances of
CardServiceFactory which are available. Application
developers can configure CardServiceRegistry using
the OpenCard.services property.

CardServiceScheduler. Responsible for managing
CardChannel objects.

card system. A body establishing a set of rules
governing the issuance and usage of smart cards
carrying its mark.

CardTerminal class. A software construct. Instances of
the CardTerminal class represent actual physical card
terminal devices.

card terminal. (1) A frequently-used synonym for card
reader, but in fact more sophisticated. A physical device
which performs some interactive function (e.g. reading,
writing) with an inserted smart card. The simplest card
readers merely provide basic card input-output (I/O)
functionality via a single slot to insert the card. Card
terminals offer multiple slots or include a PIN pad and
a display. (2) When appearing in monospace
(CardTerminal), the OCF abstraction (device driver
code) for specific card terminals.

CardTerminal layer. A layer of OCF containing
abstractions for card terminals.

CardTerminalFactory. An OCF class of services which
are capable of creating individual instances of
CardTerminal.

CardTerminalRegistry. A system-wide OCF class of
services for keeping track of all available instances of
CardTerminal. Application developers can configure
CardTerminalRegistry using the OpenCard.terminals
property.

CHVDialog. An interface registered via the
CardService object’s setCHVDialog() method and
implemented by a default GUI component to enter the
cardholder verification data.

CommandAPDU. An APDU sent to a smart card via
the card reader’s device driver.

component. The smallest selectable set of elements
includable in a package.

communication layer. One of the three layers of
CardTerminal implementation. This layer provides
methods for handling the transfer of the data between
the host and the card reader.

confidentiality. The prevention of the unauthorized
disclosure of information.

constructor. A special function used in object-oriented
programming to initialize the state of a program object.

Generally speaking, a constructor must be called
whenever a new object is created.

credential. (1) Typically, cryptographic keys or
certificates made available in (card-external)
applications which fit the access conditions of the files
which the given application is supposed to interact
with. (2) When appearing in monospace (Credential),
OCF parlance for an interface typically representing a
cryptographic key and the associated algorithm for
performing cryptographic functions. OCF’s concrete
implementations of Credential include
RSASignCredential and DSASignCredential.

CredentialBag. A container class for CredentialStore
objects. It offers retrieval functions which the card
service implementation can use to obtain an
appropriate CredentialStore for inserted smart cards.

Credential Store. In OCF, an abstract class containing
credentials for a smart card.

cryptographic algorithm. An algorithm for
transforming confidential data so as to encrypt or
decrypt its information content. Cryptographic
algorithms can be either symmetric (the same key is
used to both encrypt and decrypt the data) or
asymmetric (different keys are employed for encrypting
and decrypting).

cryptographic functions. Any of various tools
(typically based on cryptographic algorithms) for
encrypting and decrypting information, thus making it
unintelligible to any but authorized persons (who must
undergo authentication). When employed in smart cards
for secure messaging, cryptographic functions can be
installation and/or application specific.

digital signature. An asymmetric cryptographic
operation on data proving the data’s origin and
integrity to the recipient, and thus protecting against
forgery.

EEPROM. An acronym for electrically erasable
programmable read-only memory. A non-volatile
memory technology in which data can be electrically
erased and rewritten.

external application. The program code running on
computing platform (personal computers, network
computers, automatic-teller machines, etc.) interacting
with smart cards.

FileAccessCardService. A particular card service
incorporated by OCF for dealing with file-oriented
smart cards as per ISO 7816–4.

forgery. The illicit copying and alteration of
intercepted information. A form of tampering.

function layer. One of the three layers of
CardTerminal implementation. This layer encapsulates
the detailed knowledge about your card reader.

78 OpenCard Framework 1.2 Programmer’s Guide

hashing. The one-way transformation of data having
an arbitrary length into a fixed-length digest.

initialization. A step in the manufacture of smart cards
in which the basic data common to a batch of cards is
loaded onto their chips.

Interface Device (IFD). A synonym for card reader.

interface layer. One of the three layers of
CardTerminal implementation. This layer is derived
from the abstract CardTerminal class and provides
methods for interfacing with the upper part of the
framework.

key generation. The task of creating a public/private
key pair to be used with public key cryptography. In
OCF, KeyGenerationCardService’s generateKeyPair
method can be used to obtain this functionality from an
inserted smart card.

KeyGenerationCardService. An extension of OCF’s
SignatureCardService interface offering methods for
generating a key pair for a card-resident public key
algorithm and for reading the public key part of the pair
for use outside of the card.

key importation. A task performed in OCF by the
KeyImportCardService’s importPrivateKey and
importPublicKey methods (non-validating) or its
importAndValidatePrivateKey and
importAndValidatePublicKey methods (validating). It
allows the public/private keys to be stored in a smart
card.

KeyImportCardService. An extension of OCF’s
SignatureCardService interface offering methods for
the importation and subsequent in-card verification of
keys for asymmetric key algorithms.

layout definition. The process of generating an
EEPROM image from a high-level definition of the
EEPROM layout. Most smart card applications
maintain information typically kept in EEPROM-based
files on the card’s file system. Layout definition is
about identifying the information items that should go
in the card and defining an appropriate file structure in
the card. The latter includes specifying the type of file
(transparent, record-oriented, cyclic), file names and/or
identifiers, access conditions, initial data, etc.

Master File (MF). A specially dedicated file in a smart
card’s file system representing the file system’s root.

non-volatile. Said of memory storage technologies
which are not dependent upon a power supply for
storing data.

OPENCARD CONSORTIUM. A consortium including 3GI,
BULL, DALLAS SEMICONDUCTORS, FIRST ACCESS, GEMPLUS,
INTELLECT, INTERNATIONAL BUSINESS MACHINES CORP., NETWORK

COMPUTER INC., NEWCOM TECHNOLOGIES, SCHLUMBERGER, SCM
MICROSYSTEMS, SIEMENS, SUN MICROSYSTEMS, UBIQ, and VISA

INTERNATIONAL.

OPENCARD FRAMEWORK (OCF). The name of an
object-oriented software framework for smart card
access. It is implemented in the JAVA programming
language and is located between a smart card-aware
application or applet written in JAVA and the card reader.
The terms OPENCARD FRAMEWORK and OCF are protected
trademarks.

padding. Appending extra bits to either side of a data
string up to a pre-defined length.

Personal Identification Number (PIN). The secret
code used to authenticate a cardholder.

polling. The periodic querying of device status in
order to detect status changes. In the case of OPENCARD,
polling can be used to detect smart card insertion and
removal.

polling mechanism. A program construct; typically, a
loop that runs periodically and that calls the
appropriate status query methods for individual
devices.

PowerManagementInterface. An OCF interface
comprising the powerUpCard() and powerDownCard()
methods, both of which take the slot number as a
parameter and allow the supply of power to the smart
card in the designated slot to be controlled. This
optional CardTerminal function is useful in the case of
long-lasting applications that only sporadically interact
with smart cards in environments where low power
consumption matters.

private key. The privately-held component of an
integrated asymmetric key pair.

protocol. The procedures used by two or more
computer systems for communicating with each other.

public key. The public component of an integrated
asymmetric key pair.

ResponseAPDU. An APDU sent back by a smart card
in response to a CommandAPDU it has received.

RSA. An acronym for an asymmetric cryptographic
algorithm named after its inventors, Ron Rivest, Adi
Shamir, and Len Adleman. It is used in public-key
cryptography and is based on the fact that it is easy to
multiply two large prime numbers together, but hard to
factor them out of their product. RSA is a protected
trademark of RSA Security Data, Inc.

SCQL. An acronym for Structured Card Query
Language.

secure messaging. The use of cryptographic functions to
protect and authenticate data passed to and from a

Glossary 79

smart card on a per-message basis. The card service
implementation, while it generally does not implement
its own cryptographic functions, must be aware of
secure messaging if supported by the card.

Security Access Module (SAM). A unit in which
cryptographic algorithms and keys may be stored.

SignatureCardService. A card service incorporated by
OCF for generation and verification of digital
signatures. SignatureCardService’s signData and
verifySignedData methods perform this operation.

signature generation. The act of creating a special
data block known as a digital signature which allows
changes in the signed data to be detected and data to
be authenticated. In OCF, this is performed by
SignatureCardService’s signData method, which
computes a hash value on the message and then
encrypts this hash value using the private key of a key
pair. The (time-consuming) computation of the hash
value can also be performed outside of the OPENCARD

FRAMEWORK.

signature verification. A task performed in OCF by
SignatureCardService’s verifySignedData method,
which computes the decryption on the given signature
using the public key, computes a hash value on the
plain message, and then compares the hash value with
the decrypted signature. The (time-consuming)
computation of the hash value can also be performed
outside of the OPENCARD FRAMEWORK.

slot. (1) A physical opening in a card terminal into /
from which a smart card can be inserted / removed. (2)
When appearing in monospace font (Slot), OCF’s
representation of such a physical opening and an
instance of the Slot class.

smart card. Integrated circuit cards corresponding to
the ISO / IEC standards 7816, JAVACARDs as defined in
SUN’s JavaCard 2.0 specifications, or any other smart
tokens (including smart accessories). Important
functions include secure data storage and (optionally)
cryptographic functionality.

SmartCard. An OCF class providing an entry point to
OCF.

SmartCard object. An object with a pivotal role in
interacting with a physical smart card. Can be obtained
e.g. by calling the waitForCard method on the
SmartCard class, which returns a SmartCard object.

TerminalCommand. An OCF interface comprising the
sendTerminalCommand() method, which takes a byte
array and sends it to the card terminal. Assuming an
application knows the set of commands that a given
card reader supports, it can use this optional
CardTerminal function to control the card reader.

UserInteraction. An optional CardTerminal function.
This OCF interface comprises the display() method to

present a message to the cardholder, the clearDisplay()
method to erase the message from the display, the
keyboardInput() method to collect a string entered by
the cardholder, and the promptUser() convenience
method, which combines displaying the message to and
collecting input from the cardholder into a single call.

80 OpenCard Framework 1.2 Programmer’s Guide

Bibliography

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, Design Patterns —
Elements of Reusable Object-Oriented Software, ISBN: 0–201–63361–2, Reading,
Massachusetts: Addison-Wesley Publishing Company, 1994.

Scott B. Guthery & Timothy M. Jurgensen, SmartCard Developer’s Kit, ISBN:
1–57870–027–2, Indianapolis, Indiana: Macmillan Technical Publishing, 1998.

Henry Dreifus & J. Thomas Monk, smartcards — A guide to building and managing
smart card applications, ISBN: 0-471-15748-1, New York: John Wiley & Sons, 1998.

Jack M. Kaplan, SmartCards — The Global Information Passport, ISBN: 1–850–32212–0,
Boston, Massachusetts: Thomson Computer Press, 1996.

W. Rankl / W. Effing, Handbuch der Chipkarten, ISBN: 3-446-18893-2, Carl Hanser
Verlag Muenchen Wien, 1996.

U. Hansmann, M. S. Nicklous, T. Schõck, F. Seliger Smart Card Application
Development Using Java, ISBN: 3-540-65829-7, Springer Verlag Berlin, 1999.

Mike Hendry, Smart Card Security and Applications, ISBN: 0-89006-953-0, Norwood,
Massachusetts: ARTECH House, Inc., 1997.

W. Rankl & W. Effing, Smart Card Handbook, ISBN: 0–47196–720–3, New York: John
Wiley & Sons, 1997.

81

82 OpenCard Framework 1.2 Programmer’s Guide

IBMR

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

BOEB-OCFP-00

